

JEE MAIN

CURATED BY EXPERT FACULTY OF PW

CHEMISTRY

1500+

Selected MCQs to Boost your Confidence

EDITION: First

Published By: Physicswallah Limited

ISBN: 978-93-48446-75-6

MRP: 499/-

Mobile App: Physics Wallah (Available on Play Store)

Website: www.pw.live

Youtube Channel: Physics Wallah - Alakh Pandey

JEE Wallah

Competition Wallah NCERT Wallah

Email: publication@pw.live

SKU Code: 9e60dc3b-69ba-45a8-a94e-ebd965308b05

Rights

All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission from the author or publisher.

In the interest of the student community:

Circulation of a soft copy of the book(s) in PDF or other equivalent format(s) through any social media channels, emails, or any other channels via mobiles, laptops, or desktops is a criminal offense. Anyone circulating, downloading, or storing a soft copy of the book on their device(s) is in breach of the Copyright Act. Furthermore, photocopying this book or any of its material is also illegal. Do not download or forward any such soft copy material if you come across it.

Disclaimer

A team of PW experts and faculty with a strong understanding of the subject has worked hard on the books. While the authors, editors, and publisher have made their best efforts in preparing these books, and the content has been checked for accuracy, the book is intended for educational purposes only. The authors, editors, and publisher shall not be responsible for any errors contained in the book.

The publication is designed to provide accurate and authoritative information with regard to the subject matter covered.

(This Module shall only be Used for Educational Purpose.)

PREFACE

A highly skilled professional team of Physics Wallah (PW) works arduously to ensure that the students receive the best content for the **JEE** exam.

From the beginning, the whole content team comprising faculties, DTP operators, Proofreaders and others are involved in shaping the material to their best knowledge and experience to produce powerful content for the students.

Faculties have adopted a new style of presenting the content in easy-to-understand language and have provided the team with their guidance and supervision throughout the creation of this Study Material.

Physics Wallah (PW) strongly believes in conceptual and fun-based learning. PW provides highly exam-oriented content to bring quality and clarity to the students.

A plethora of **JEE Study Material** is available in the market but PW professionals are continuously working to provide the supreme Study Material for our **JEE** students.

This Study Material adopts a multi-faceted approach to master and understanding the concepts by having a rich diversity of questions asked in the examination and equip the students with the knowledge for the competitive exam.

The main objective of the study material is to provide a large number of quality problems with varying cognitive levels to facilitate the teaching-learning of concepts that are presented through the book.

It has become popular among aspirants because of its easy-to-understand language.

Students can benefit themselves by attempting the exercise given in this problem booklet.

The questions are strictly designed in accordance with the exam relevant topics that help to develop examination temperament within the students.

Mastering the Physics Wallah (PW) study material curated by the PW team, the students can easily qualify for the exam with a top Rank in the **JEE**.

In each chapter, for better understanding, questions have been classified according to the latest syllabus of **JEE Mains**.

	The nature and	diversity	of the	equations	help	students	to acc	e the	examination	1.
--	----------------	-----------	--------	-----------	------	----------	--------	-------	-------------	----

Quality c	questions	to strengthen	the conce	pt of the to	opic at the	zenith 1	level.

BOOK FEATURES

	Topic	wise	MCQs	and	Integer	type	questions
--	-------	------	-------------	-----	---------	------	-----------

	Strictly	as per	the	latest	NTA	syllabu	S
--	----------	--------	-----	--------	-----	---------	---

☐ Assertion Reason, Matrix match & Statement based questions also included in exercises.

CONTENTS

1.	Stoichiometry and Redox Reactions	1-07
2.	Structure of Atom	8-15
3.	Classification of Elements and Periodicity in Properties	16-22
4.	Chemical Bonding	23-29
5.	Thermodynamics	30-37
6.	Chemical Equilibrium	38-46
7.	Ionic Equilibrium	47-53
8.	Organic Chemistry- Some Basic Principles & Techniques	54-62
9.	Hydrocarbons	63-71
10.	Solutions and Colligative Properties	72-79
11.	Electrochemistry	80-88
12.	Chemical Kinetics	89-98
13.	The p-Block Elements (Group 13 to 18)	99-105
14.	The d- and f- Block Elements & Qualitative Analysis	06-112
15.	Coordination Compounds	13-119
16.	Haloalkanes and Haloarenes	20-128
17.	Alcohols, Phenols and Ethers	29-140
18.	Aldehydes, Ketones and Carboxylic Acids	41-151
19.	Amines	52-161
20.	Biomolecules	62-168
*	ANSWER KEY1	69-178
*	HINTS & SOLUTIONS	79-312

STOICHIOMETRY AND REDOX REACTIONS

Single Option Correct Type Questions (01 to 60)

- 1. A partially dried clay mineral contains 8% water. The original sample contains 12% water and 45% silica. The % of silica in the partially dried sample is nearly.
 - (1) 50%
- (2) 49%
- (3) 55%
- (4) 47%
- 2. The vapour density of a mixture containing equal number of moles of methane and ethane at STP is
 - (1) 11.5
- (2) 11.0

(3) 23

- (4) 12.0
- 3. 6 g of a hydrocarbon on combustion with 22.4 gm of oxygen produces 17.6 g of CO₂ and 10.8 g of H₂O. The data illustrates the law of:
 - (1) conservation of mass
 - (2) multiple proportions
 - (3) constant proportions
 - (4) reciprocal proportions
- **4.** Which of the following contains the greatest number of atoms?
 - (1) 1.0 g of butane (C_4H_{10})
 - (2) $1.0 \text{ g of nitrogen } (N_2)$
 - (3) 1.0 g of silver (Ag)
 - (4) $1.0 \text{ g of water (H}_2\text{O})$
- 5. 4.4 g of an unknown gas occupies 2.24 litres of volume at STP, the gas may be:
 - (1) N_2O
- (2) CO
- (3) CO₂
- (4) 1 & 3 Both
- **6.** If N_A is Avogadro's number then number of valence electrons in 4.2 g of nitride ions (N³⁻)
 - (1) 2.4 N_A
- (2) 4.2 N_A
- (3) 1.6 N_A
- $(4) 3.2 N_A$

- 7. The empirical formula of a compound of molecular mass 120 is CH₂O. The molecular formula of the compound is:
 - (1) $C_2H_4O_2$
- (2) C₄H₈O₄
- $(3) C_3H_6O_3$
- (4) All of these
- **8.** The percentage of nitrogen in urea is about
 - (1) 46

(2) 85

(3) 18

- (4) 28
- 9. 500 ml of a gaseous hydrocarbon when burnt in excess of O₂ gave 2.5 litre of CO₂ and 3.0 litre of water vapours under standard conditions. Molecular formula of the hydrocarbon is:
 - (1) C_4H_8
- (2) C₄H₁₀
- (3) C₅H₁₀
- $(4) C_5H_{12}$
- 10. Butane C_4H_{10} , burns with the oxygen in air to give carbon dioxide and water.

What is the amount (in moles) of carbon dioxide produced from $0.15 \text{ mol } C_4H_{10}$?

 $C_4H_{10}(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$ (not balanced)

- (1) 0.15 mol CO₂
- (2) 0.30 mol CO₂
- (3) 0.45 mol CO₂
- (4) 0.60 mol CO₂
- **11.** For the reaction:

$$A + 2B \rightarrow C$$

5 mole of A and 8 mole of B will produce:

- (1) 5 mole of C
- (2) 4 mole of C
- (3) 8 mole of C
- (4) 12 mole of C

12. Zinc and hydrochloric acid react according to the reaction.

 $Zn(s) + 2HCl(aq.) \longrightarrow ZnCl_2(aq.) + H_2(g)$ If 0.30 mole of Zn are added to hydrochloric acid containing 0.52 mole HCl, how many moles of H_2 are produced?

- (1) 0.26
- (2) 1.04

- (3) 0.52
- (4) 0.13
- 13. The volume of water that must be added to a mixture of 250 ml of 0.6 M HCl and 750 ml of 0.2 M HCl to obtain 0.25 M solution of HCl is:
 - (1) 750 ml
- (2) 100 ml
- (3) 200 ml
- (4) 300 ml
- 14. 15 gram of methyl alcohol is dissolved in 35 gram of water. What is the mass percentage of methyl alcohol in solution?
 - (1) 30%
- (2) 50%
- (3) 70%
- (4) 75%
- **15.** The oxidation number of Phosphorus in $Mg_2P_2O_7$ is:
 - (1) + 3

(2) + 2

(3) + 5

- (4) 3
- **16.** Consider the following reaction:

 $3Br_2 + 6CO_3^2 + 3H_2O \longrightarrow 5Br^- + BrO_3^- + 6HCO_3^-$

Which of the following statements is true regarding this reaction:

- (1) Bromine is oxidized and the carbonate radical is reduced.
- (2) Bromine is reduced and the carbonate radical is oxidized
- (3) Bromine is neither reduced nor oxidized.
- (4) Bromine is both reduced and oxidized.
- **17.** Which reaction does not represent auto redox or disproportionation reaction:
 - (1) $Cl_2 + OH^- \longrightarrow Cl^- + ClO_3^- + H_2O$
 - (2) $2H_2O_2 \longrightarrow H_2O + O_2$
 - $(3) 2Cu^+ \longrightarrow Cu^{2+} + Cu$
 - (4) $(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + 4H_2O$

- **18.** The compound that can work both as an oxidising as well as a reducing agent is:
 - (1) KMnO₄
- (2) H_2O_2
- (3) $Fe_2(SO_4)_3$
- (4) $K_2Cr_2O_7$
- 19. The molar ratio of Fe²⁺ to Fe³⁺ in a mixture of FeSO₄ and Fe₂(SO₄)₃ having equal number of sulphate ion in both ferrous and ferric sulphate is
 - (1) 1:2
 - (2) 3:2
 - (3) 2:3
 - (4) Can't be determined
- **20.** A sample of ammonium phosphate (NH₄)₃PO₄ contains 3.18 mol of H atoms. The number of moles of O atoms in the sample is:
 - (1) 0.265
- (2) 0.795
- (3) 1.06
- (4) 3.18
- 21. If LPG cylinder contains mixture of butane and isobutane, then the amount of oxygen that would be required for combustion of 1 kg of it will be:
 - (1) 1.8 kg
- (2) 2.7 kg
- (3) 4.5 kg
- (4) 3.58 kg
- 22. Calculate the weight of FeO produced from 6.7 g VO & 4.8 g Fe₂O₃

 $2VO + Fe_2O_3 \longrightarrow 2FeO + V_2O_5$

(At. wt. of V = 51, At. wt. of Fe = 56)

- (1) 4.32
- (2) 7.755
- (3) 2.585
- (4) 0.0718
- **23.** Decreasing order of mass of pure NaOH in each of the aqueous solution.
 - (I) 50 g of 40% (W/W) NaOH
 - (II) 50 ml of 50% (W/V) NaOH $(d_{sol} = 1.2 \text{ g/ml}).$
 - (III) 50 g of 15 M NaOH ($d_{sol} = 1 \text{ g/ml}$).
 - (1) I, II, III
- (2) III, II, I
- (3) II, III, I
- $(4) \quad III = II = I.$
- 24. What is the quantity of water that should be added to 16 g methanol to make the mole fraction of methanol as 0.25:
 - (1) 27 g
- (2) 12 g
- (3) 18 g
- (4) 36 g

25. The number of electrons required to balance the following equation,

 $NO_3^- + 4H^+ + e^- \longrightarrow 2H_2O + NO$ is

(1) 5

(2) 4

(3) 3

- (4) 2
- **26.** In an organic compound of molar mass 108 g mol⁻¹, C, H and N atoms are present in 9 : 1 : 3.5 by weight. Molecular formula can be:
 - (1) $C_6H_8N_2$
- (2) $C_7H_{10}N$
- (3) $C_5H_6N_3$
- (4) C₄H₁₈N₃
- 27. When KMnO₄ acts as an oxidizing agent and ultimately forms MnO₄²⁻, MnO₂, Mn₂O₃ and Mn²⁺, then the number of electrons transferred in each case is:
 - (1) 4, 3, 1, 5
- (2) 1, 5, 3, 7
- (3) 1, 3, 4, 5
- (4) 3, 5, 7, 1
- 28. 6.02×10^{20} molecules of urea are present in 100 ml of its solution. The concentration of urea solution is-
 - (1) 0.001 M
- (2) 0.01 M
- (3) 0.02 M
- (4) 0.1 M
- 29. Two solutions of a substance (non-electrolyte) are mixed in the following manner. 480 ml of 1.5 M first solution + 520 ml of 1.2 M second solution. What is the molarity of the final mixture?
 - (1) 2.70 M
- (2) 1.344 M
- (3) 1.50 M
- (4) 1.20 M
- 30. How many moles of magnesium phosphate, $Mg_3(PO_4)_2$ will contain 0.25 mole of oxygen atoms?
 - (1) 0.02
- (2) 3.125×10^{-2}
- (3) 1.25×10^{-2}
- (4) 2.5×10^{-2}
- **31.** Density of a 2.05M solution of acetic acid in water is 1.02 g/ml. The molality of the solution is:
 - (1) 1.14 mol kg⁻¹
- (2) 3.28 mol kg⁻¹
- $(3) \ \ 2.28 \ mol \ kg^{-1}$
- (4) 0.44 mol kg⁻¹

32. In the reaction

 $2Al_{(s)} + 6HCl_{(aq)} \rightarrow 2Al^{3+}_{(aq)} + 6Cl^{-}_{(aq)} + 3H_2(g)$ Which of the following statement is correct.

- (1) 6 L $HCl_{(aq)}$ is consumed for every 3 L H_2 produced.
- (2) 33.6 L $H_{2(g)}$ is produced regardless temperature and pressure for every moles that reacts.
- (3) 67.2 L H_{2(g)} at STP is produced for every mole of Al that reacts.
- (4) 11.2 L $H_{2(g)}$ at STP is produced for every mole of $HCl_{(aq)}$ consumed
- 33. The density (in g mL⁻¹) of a 3.60 M sulphuric acid solution that is 29% (H_2SO_4 molar mass = 98 g mol⁻¹) by mass will be:
 - (1) 1.22
- (2) 1.45
- (3) 1.64
- (4) 1.88
- **34.** A 5.2 molal aqueous solution of methyl alcohol (CH₃OH) is supplied. What is the mole fraction of methyl alcohol in the solution?
 - (1) 0.100
- (2) 0.190
- (3) 0.086
- (4) 0.050
- 35. The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 u) in 1000 g of water is 1.15 g/mL. The molarity of this solution is:
 - (1) 0.50 M
- (2) 1.78 M
- (3) 1.02 M
- (4) 2.05 M
- **36.** Consider the following reaction:

 $xMnO_4^- + yC_2O_4^{2-} + zH^+$

$$\rightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O$$

The values of x, y and z in the reaction are, respectively:

- (1) 5, 2 and 16
- (2) 2, 5 and 8
- (3) 2, 5 and 16
- (4) 5, 2 and 8

- 37. In which of the following reactions H_2O_2 acts as a reducing agent?
 - (a) $H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$
 - (b) $H_2O_2 2e^- \longrightarrow O_2 + 2H^+$
 - (c) $H_2O_2 + 2e^- \longrightarrow 2OH^-$
 - (d) $H_2O_2 + 2OH^- 2e^- \longrightarrow O_2 + 2H_2O$
 - (1) (a) & (b) only
- (2) (c) & (d) only
- (3) (a) & (c) only
- (4) (b) & (d) only
- **38.** The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1 : 4. The ratio of number of their molecule is:
 - (1) 1:4
- (2) 7:32
- (3) 1:8
- (4) 3:16
- 39. The most abundant elements by mass in the body of a healthy human adult are: Oxygen (61.4%), Carbon (22.9%), Hydrogen (10.0%) and Nitrogen (2.6%). The weight which a 75 kg person would gain if all ¹H atoms are replaced by ²H atoms is:
 - (1) 37.5 kg
- (2) 7.5 kg
- (3) 10 kg
- (4) 15 kg
- **40.** A + 2B + 3C \Longrightarrow AB₂C₃

Reaction of 6.0 g of A, 6.0×10^{23} atoms of B, and 0.036 mol of C yields 4.8 g of compound AB₂C₃. If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of B is (Avogadro no. = 6×10^{23}):

- (1) 50 amu
- (2) 60 amu
- (3) 70 amu
- (4) 40 amu
- **41.** 5 L of an alkane requires 25 L of oxygen for its complete combustion. If all volumes are measured at constant temperature and pressure, the alkane is:
 - (1) Butane
- (2) Isobutane
- (3) Ethane
- (4) Propane
- 42. An organic compound contains C, H and S. The minimum molecular weight of the compound containing 8% sulphur is: (atomic weight of S = 32 amu)
 - (1) 300 g mol⁻¹
- (2) 400 g mol⁻¹
- $(3)\ \ 200\ g\ mol^{-1}$
- (4) 600 g mol⁻¹

- **43.** The pair of compounds having metals in their highest oxidation state is:
 - (1) MnO₂ and CrO₂Cl₂
 - (2) [FeCl₄]⁻ and Co₂O₃
 - (3) MnO_4^- and $[Cu(CN)_4]^{2-}$
 - (4) $[NiCl_4]^{2-}$ and $[CoCl_4]^{2-}$
- 44. The sodium salt of methyl orange has 7% sodium. What is the minimum molecular weight of the compound?
 - (1) 420

- (2) 375
- (3) 328.57
- (4) 294.46
- 45. Common salt obtained from sea water contains 96% NaCl by mass. The approximate number of molecules of NaCl present in 10.0 g of the common salt is: (At. wt. Na = 23 amu)
 - $(1) 10^{21}$
- $(2) 10^{22}$

- $(3) 10^{23}$
- $(4) 10^{24}$
- **46.** Consider the following statements:
 - 1. If all the reactants are not taken in their stoichiometric ratio, then at least one reactant will be left behind.
 - 2. 2 moles of H₂(g) and 3 moles of O₂(g) produce 2 moles of water.
 - 3. equal weight of carbon and oxygen are taken to produce CO₂ then O₂ is limiting reagent.

The above statements 1, 2, 3 respectively are (T = True, F = False)

- (1) TTT
- (2) F T F
- (3) FFF
- (4) TFT
- **47.** Which of the following equations is a balanced one:
 - (1) $5BiO_3^- + 22H^+ + Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_2O + MnO_4^-$
 - (2) $5BiO_3^- + 14H^+ + 2Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_2O + 2MnO_4^-$
 - (3) $2BiO_3^- + 4H^+ + Mn^{2+} \longrightarrow 2Bi^{3+} + 2H_2O + MnO_4^-$
 - (4) $6BiO_3^- + 12H^+ + 3Mn^{2+} \longrightarrow 6Bi^{3+} + 6H_2O + 3MnO_4^-$

- 48. How much NaNO₃ must be weighed out to make 50 ml of an aqueous solution containing 70 mg of Na⁺ per mL?
 - (1) 11.394 g
- (2) 1.29 g
- (3) 10.934 g
- (4) 12.934 g
- The temperature at which molarity of pure 49. water is equal to its molality is:
 - (1) 273 K
- (2) 298 K
- (3) 277 K
- (4) None of these
- **50.** 5.85 g of NaCl is dissolved in 1 L of pure water. The number of ions in 1 mL of this solution is
 - (1) 6.02×10^{19}
- (2) 1.2×10^{22}
- $(3) 1.2 \times 10^{20}$
- (4) 6.02×10^{20}
- 51. The correct expression relating molality (m), molarity (M), density of solution (d) and molar mass (M₂) of solute is:

(1)
$$m = \frac{M}{d + MM_2} \times 1000$$

(2)
$$m = \frac{M}{1000d - MM_2} \times 1000$$

(3)
$$m = \frac{d + MM_2}{M} \times 1000$$

(4)
$$m = \frac{1000 d - MM_2}{M} \times 1000$$

- Calculate the volume of O2 needed for **52.** combustion of 1 kg of carbon at STP. C + O₂
 - $\xrightarrow{\Delta}$ CO₂.
 - (1) 1866.67 L
 - (2) 3733.33 L
 - (3) 933.33 L
 - (4) 4666.67 L

- 53. A 1 g sample of KClO₃ was heated under such conditions that a part of it decomposed according to the equation.
 - (i) $2KClO_3 \longrightarrow 2KCl + 3O_2$ and the remaining underwent change according to the equation
 - (ii) $4KClO_3 \longrightarrow 3KClO_4 + KCl$ If the amount of O₂ evolved was 146.8 mL at NTP, calculate the percentage by weight of KClO₄ in the residue.
 - (1) 29.3 %
- (2) 49.8 %
- (3) 62.5 %
- (4) 87.1 %
- 54. 64 g of a mixture of NaCl and KCl were treated with concentrated sulphuric acid. The total mass of metal sulphates obtained was found to be 76 g. What are the mass percent of NaCl in the mixture. The reactions are,

2 NaCl +
$$H_2SO_4 \longrightarrow Na_2SO_4 + 2$$
 HCl ; 2 KCl + $H_2SO_4 \longrightarrow K_2SO_4 + 2$ HCl

- (1) 42.96 %
- (2) 84.9 %
- (3) 31.5 %
- (4) 63.1 %
- 55. 100 ml of 0.15 M solution of $Al_2(SO_4)_3$, the density of the solution is 1.5 g/ml. Report the no. of Al³⁺ ions in this weight.

 - (1) 1.8×10^{25} ions (2) 6×10^{22} ions

 - (3) 1.8×10^{23} ions (4) 1.8×10^{22} ions
- **56.** A person adds 1.71 gram of sugar $(C_{12}H_{22}O_{11})$ in order to sweeten his tea. The number of carbon atoms added are (mol. mass of sugar = 342 g mol^{-1}
 - (1) 3.6×10^{22}
- (2) 7.2×10^{21}
- (3) 0.05
- (4) 6.6×10^{22}
- 57. **Assertion:** A substance which gets reduced can act as an oxidizing agent.

Reason: In the reaction, $3ClO^- \longrightarrow$ $ClO_3^- + 2Cl^-$, C1 atom is oxidized as well as

- reduced.
- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is
- (4) Both are assertion and reason are incorrect

58. Assertion: Fe₃O₄ contains iron atoms in two different oxidation numbers.

Reason: Fe²⁺ ions decolourize KMnO₄ solution.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect59. Starting with 2 moles of A and 1 mole of B, the following reaction

$$2A + 3B \longrightarrow X + 2Y$$

is made to take place. Assume the reaction to go to completion. Match the number of moles listed in List II with various species listed in List I.

	List- I		List- II
I	A	P	1/3
II	В	Q	2/3
III	X	R	0.0
IV	Y	S	4/3
		T	1/6

- (1) I-S; II-R; III-P; IV-Q
- (2) I-P; II-Q; III-R; IV-S
- (3) I-T; II-S; III-R; IV-P
- (4) I-Q; II-R; III-S; IV-T

60. Match List I with List II and select the correct answer using the code given below the lists:

	List- I		List- II
I	50 mL of 3M HCl solution + 150 mL of 1M FeCl ₃ solution	P	4.17 m
II	An aqueous solution of NaCl with mole fraction of NaCl as 0.1	Q	$[Cl^-] = 3 M$
III	20% (w/w) propanol (C ₃ H ₇ OH) solution	R	$[H^+] = 2.75 \text{ M}$
IV	10.95% (w/v) HCl solution	S	6.17 m

- (1) I-R; II-S; III-P; IV-Q
- (2) I-Q; II-S; III-R; IV-Q
- (3) I-Q; II-S; III-P; IV-Q
- (4) I-Q; II-R; III-P; IV-S

Integer Type Questions (61 to 75)

- 61. The weight of a molecule of the compound $C_6H_{12}O_6$ is $x \times 10^{-22}$ g. Find the value of x. $(N_A = 6 \times 10^{23})$
- **62.** 1.520 g of the hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal is?
 - (Round off to nearest integer)
- **63.** Caffeine has a molecular weight of 194. It contains 28.9% nitrogen by mass. Find the number of atoms of nitrogen in one molecule of it.
- **64.** Vapour density of a gas if its density is 0.178 g/L at NTP is: (Round off to nearest integer)
- **65.** A gas is found to have the formula $(CO)_x$. It's VD is 70. The value of x must be:
- **66.** The volume of oxygen required for complete combustion of 20 ml of ethene is
- 67. If 500 ml of 1 M solution of glucose is mixed with 500 ml of 1 M solution of glucose, final molarity of solution will be:
- 68. 300 ml of 3.0 M NaCl is added to 200 ml of 4.0 M BaCl₂ solution. The concentration of Cl⁻ ions in the resulting solution is
- **69.** The oxidation state of Cr in $[Cr (NH_3)_4Cl_2]^+$ is:

- 70. The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl is 'x'. Then find the value of '1000x'.
- 71. At room temperature, the density of water is 1.0 g/ml and the density of ethanol is 0.789 g/ml. What volume (in ml) of ethanol contains the same number of molecules as are present in 175 ml of water? (Nearest Integer)
- 72. What volume (in mL) of $0.10 \text{ M H}_2\text{SO}_4$ must be added to 50 mL of a 0.10 M NaOH solution to make a solution in which the molarity of the H_2SO_4 is 0.050 M?
- 73. If 1/2 moles of oxygen combine with aluminium to form Al₂O₃, then weight of aluminium metal (in g) used in the reaction is:
- 74. What volume (in ml) of HCl solution of density 1.2 g/cm³ and containing 36.5% by weight HCl, must be allowed to react with zinc (Zn) in order to liberate 4.0 g of hydrogen? (Nearest integer)
- 75. $Ca_3(PO_4)_2(s)$ and $H_3PO_3(s)$ contains same number of 'P' atom then the ratio of oxygen atom in the two compounds respectively is $\frac{a}{b}$. Find the value of (a + b). [Take lowest possible integral values of a & b]

STRUCTURE OF ATOM

Single Option Correct Type Questions (01 to 60)

- 1. If 10^{-17} J of light energy is needed by the interior of human eye to see an object. The number of photons of green light ($\lambda = 550$ nm) needed to see the object are: ($h = 6.6 \times 10^{-34}$ J-s)
 - (1) 27

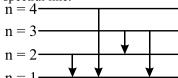
(2) 28

(3) 29

- (4) 30
- 2. Light of wavelength λ falls on metal having work function hc/λ_0 . Photoelectric effect will take place only if:
 - (1) $\lambda > \lambda_0$
- (2) $\lambda > 2\lambda_0$
- (3) $\lambda < \lambda_0$
- (4) $\lambda < 3\lambda_0$
- 3. A bulb of 40 W is producing a light of wavelength 620 nm with 80% of efficiency then the number of photons emitted by the bulb in 20 seconds are $(1\text{eV} = 1.6 \times 10^{-19} \text{ J}, \text{hc} = 12400 \text{ eV Å})$
 - (1) 2×10^{18}
- $(2) 10^{18}$

- $(3) 10^{21}$
- (4) 2×10^{21}
- 4. The ionization energy of He⁺ is 19.6×10^{-18} J atom⁻¹. The energy of the first stationary state of Li⁺² will be:
 - (1) $84.2 \times 10^{-18} \text{ J/atom}$
 - (2) $44.10 \times 10^{-18} \text{ J/atom}$
 - (3) $63.2 \times 10^{-18} \text{ J/atom}$
 - (4) 21.2×10^{-18} J/atom
- 5. Energy required to pull out an electron from 1st orbit of hydrogen atom to infinity is 100 units. The amount of energy needed to pull out the electron from 2nd orbit to infinity is:

- (1) 50 units
- (2) 100 units
- (3) 25 units
- (4) Zero
- **6.** The ionization energy of H-atom is 13.6 eV. The ionization energy of Li⁺² ion will be:
 - (1) 54.4 eV
- (2) 122.4 eV
- (3) 13.6 eV
- (4) 27.2 eV
- 7. If the wavelength of series limit of the Lyman series for the hydrogen atoms is 912 Å, then the wavelength of series limit for the Balmer series of the hydrogen atom is:
 - (1) 912 Å
- (2) $912 \times 2 \text{ Å}$
- (3) $912 \times 4 \text{ Å}$
- (4) 912/2 Å
- **8.** According to Bohr's theory, the angular momentum for an electron in 5th orbit is:
 - (1) $2.5 \text{ h/}\pi$
- (2) $5 \text{ h/}\pi$
- (3) $25 \text{ h/}\pi$
- (4) $5\pi / 2h$
- **9.** Calculate wavelength of 3rd line of Brackett series in hydrogen spectrum
 - (1) $\frac{784}{33R}$
- (2) $\frac{33 R}{784}$
- (3) $\frac{784 R}{33}$
- (4) $\frac{33}{784R}$
- **10.** Calculate the wavelength of 1st line of Balmer series in Hydrogen spectrum.
 - (1) 6656 Å
 - (2) 6266 Å
 - (3) 6626 Å
 - (4) 6566 Å


- 11. When an electron in an excited hydrogen atom jumps from an energy level for which n = 5 to a lower level for which n = 2, the spectral line is observed in theregion and inseries of the hydrogen spectrum
 - (1) Visible, Balmer
 - (2) Visible, lyman
 - (3) Infrared, lyman
 - (4) Infrared, Balmer
- 12. The speed of a proton is one hundredth of the speed of light in vacuum. What is its de-Broglie wavelength? Assume that one mole of protons has a mass equal to one gram. $[h = 6.626 \times 10^{-1}]$ ²⁷ erg sec]:
 - (1) $13.31 \times 10^{-7} \text{ Å}$
- (2) $1.33 \times 10^{-3} \text{ Å}$
- (3) $13.13 \times 10^{-5} \text{ Å}$
- (4) $1.31 \times 10^{-2} \text{ Å}$
- The Uncertainty in the momentum of an 13. electron is 1.0×10^{-5} kg m s⁻¹. The Uncertainty in its position will be:
 - $(h = 6.626 \times 10^{-34} \text{ Js})$
 - (1) 1.05×10^{-28} m
- (2) 1.05×10^{-26} m
- (3) 5.27×10^{-30} m
- (4) 5.25×10^{-28} m
- A helium atom is moving with a velocity of 14. $2.40 \times 10^2 \,\mathrm{ms^{-1}}$ at 300 K. The de-Broglie wave length is about
 - (1) 0.416 nm
- (2) 0.83 nm
- (3) 803 Å
- (4) 8000 Å
- The wavelength of a charged particle 15. the square root of the potential difference through which it is accelerated:
 - (1) is inversely proportional to
 - (2) is directly proportional to
 - (3) is independent of
 - (4) is unrelated with
- 16. Calculate the Uncertainty in velocity of a cricket ball of mass 150 g if the Uncertainty in its position is of the order of 1 Å (h = $6.6 \times 10^{-}$ 34 Kg m 2 s $^{-1}$)
 - (1) $3.499 \times 10^{-24} \text{ ms}^{-1}$
 - (2) $3.499 \times 10^{-21} \text{ ms}^{-1}$
 - (3) $3.499 \times 10^{-20} \text{ ms}^{-1}$
 - (4) $3.499 \times 10^{-30} \text{ ms}^{-1}$

- 17. Which of the following set of quantum numbers are permitted
 - (1) n = 3, l = 2, m = -2, s = +1/2
 - (2) n = 3, 1 = 2, m = -1, s = 0
 - (3) n = 2, 1 = 2, m = +1, s = -1/2
 - (4) n = 2, l = 2, m = +3, s = -1/2
- 18. For the energy levels in an atom which one of the following statements is correct:
 - (1) The 4s sub-energy level is at a higher energy than the 3d sub-energy level
 - (2) The second principal energy level can have five orbitals and contain a maximum of 10 electrons
 - (3) The M-energy level can have maximum of 18 electrons
 - (4) None of these
- Which of the following represents the correct 19. set of quantum numbers of a 4d electron?
 - (1) $4, 3, 2, +\frac{1}{2}$ (2) 4, 2, 1, 0
 - (3) $4, 3, -2, +\frac{1}{2}$ (4) $4, 2, 1, -\frac{1}{2}$
- Magnetic moment of X^{n+} (Z = 26) is $\sqrt{24}$ B.M. 20. Hence number of unpaired electrons and value of n respectively are:
 - (1) 4, 2
- (2) 2, 4

- (3) 3, 1
- (4) 0, 2
- 21. For $\ell = 1$, n = 3 the corresponding orbitals are -
 - (1) s, p_x, p_v
- (2) s, p_z, p_v
- (3) s, p_x, d_{xy}
- (4) p_x , p_y , p_z
- 22. The difference between the wave number of 1st line of Balmer series and last line of paschen series for Li²⁺ ion is:

(3) 4R

- 23. The wave number of electromagnetic radiation emitted during the transition of electron in between two levels of Li²⁺ ion whose principal quantum numbers sum is 4 and difference is 2 is:
 - (1) 3.5 R_H
- $(2) 4 R_{H}$
- (3) 8 R_H
- (4) $\frac{8}{9}$ R_H
- 24. If the shortest wave length of Lyman series of H atom is x, then the wave length of the first line of Balmer series of H atom will be -
 - (1) 9x/5
- (2) 36x/5
- (3) 5x/9
- (4) 5x/36
- 25. Suppose that a hypothetical atom gives a red, green, blue and violet line spectrum. Which jump according to figure would give off the red spectral line.

- $(1) \quad 3 \to 1$
- $(2) \quad 2 \to 1$
- $(3) \quad 4 \to 1$
- $(2) \quad 2 \rightarrow 1$ $(4) \quad 3 \rightarrow 2$
- **26.** Uncertainty in position is twice the Uncertainty in momentum. Uncertainty in velocity is:
 - (1) $\sqrt{\frac{h}{\pi}}$

- $(2) \ \frac{1}{2m} \sqrt{\frac{h}{\pi}}$
- $(3) \quad \frac{1}{2m}\sqrt{\hbar}$
- $(4) \quad \frac{h}{4\pi}$
- 27. Which of the above statement (s) is/are false.
 - I. Orbital angular momentum of the electron having n = 5 and having value of the azimuthal quantum number as lowest for
 - this principal quantum number is $\frac{h}{\pi}$.
 - II. If n = 3, $\ell = 0$, m = 0, for the last valence shell electron, then the possible atomic number may be 12 or 13.
 - III. Total spin of electrons for the atom $_{25}$ Mn is $\pm \frac{7}{2}$.
 - IV. Spin only magnetic moment of inert gas is $\boldsymbol{0}$
 - (1) I, II and III
 - (2) II and III only
 - (3) I and IV only
 - (4) None of these

- **28.** Which of the following ions has the maximum magnetic moment?
 - (1) Mn^{2+}
- (2) Fe^{2+}
- (3) Ti^{2+}
- (4) Cr^{2+}
- 29. The de-Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 m/s is approximately. (planck's constant, $h = 6.63 \times 10^{-34} \text{ J-s}$)
 - (1) 10^{-33} m
- (2) 10^{-31} m
- (3) 10^{-16} m
- (4) 10^{-25} m
- **30.** Which of the following set of quantum numbers is correct for an electron in 4f orbital?
 - (1) n = 4, l = 3, m = +4, s = +1/2
 - (2) n = 4, 1 = 4, m = -4, s = -1/2
 - (3) n = 4, 1 = 3, m = +1, s = +1/2
 - (4) n = 3, l=2, m = -2, s = +1/2
- **31.** Which of the following statements in relation to the hydrogen atom is correct?
 - (1) 3s, 3p and 3d orbitals all have the same energy
 - (2) 3s and 3p orbitals are of lower energy than 3d orbital
 - (3) 3p orbital is lower in energy than 3d orbital
 - (4) 3s orbital is lower in energy than 3p orbital
- 32. In a multi-electron atom, which of the following orbitals described by the three quantum numbers will have the same energy in the absence of magnetic and electric field?
 - (i) n = 1, 1 = 0, m = 0
 - (ii) n = 2, 1 = 0, m = 0
 - (iii) n = 2, l = 1, m = 1
 - (iv) n = 3, 1 = 2, m = 1
 - (v) n = 3, 1 = 2, m = 0
 - (1) (iv) and (v) only
 - (2) (iii) and (iv) only
 - (3) (ii) and (iii) only
 - (4) (i) and (ii) only

- 33. Uncertainty in the position of an electron (mass = 9.1×10^{-31} Kg) moving with a velocity 300 $m.sec^{-1}$, Accurate upto 0.001%, will be : (h = $6.63 \times 10^{-34} \text{ J-s}$
 - (1) $19.2 \times 10^{-2} \,\mathrm{m}$ (2) $5.76 \times 10^{-2} \,\mathrm{m}$
 - (3) 1.92×10^{-2} m
- (4) 3.84×10^{-2} m
- 34. The ionisation enthalpy of hydrogen atom is $1.312 \times 10^6 \text{ J mol}^{-1}$. The energy required to excite the electron in the atom from n = 1 to n = 2 is
 - (1) $8.51 \times 10^5 \text{ J mol}^{-1}$
 - (2) $6.56 \times 10^5 \text{ J mol}^{-1}$
 - (3) $7.56 \times 10^5 \text{ J mol}^{-1}$
 - (4) $9.84 \times 10^5 \text{ J mol}^{-1}$
- 35. Calculate the wavelength (in nanometer) associated with a proton moving at 1.0×10^3 m s⁻¹ (Mass of proton = 1.67×10^{-27} kg and h = 6.63 $\times 10^{-34} \text{ J-s}$):
 - (1) 0.40 nm
- (2) 2.5 nm
- (3) 14.0 nm
- (4) 0.032 nm
- In an atom, an electron is moving with a speed 36. of 600 m/s with an accuracy of 0.005%. Certainty with which the position of the electron can be located is (h = $6.6 \times 10^{-34} \text{ kg m}^2$ s^{-1} , mass of electron, $e_m = 9.1 \times 10^{-31} \text{ kg}$):

 - (1) 5.10×10^{-3} m (2) 1.92×10^{-3} m
 - (3) 3.83×10^{-3} m
- (4) 1.52×10^{-4} m
- 37. The energy required to break one mole of Cl-Cl bonds in Cl₂ is 242 kJ mol⁻¹. The longest wavelength of light capable of breaking a single Cl–Cl bond is : $(c = 3 \times 10^8 \text{ m s}^{-1} \text{ and } N_A)$ $= 6.02 \times 10^{23} \text{ mol}^{-1}$
 - (1) 594 nm
- (2) 640 nm
- (3) 700 nm
- (4) 494 nm
- Ionisation energy of H is 2.18×10^{-18} J atom⁻¹. 38. The energy of the first stationary state (n = 1)of He+ is:
 - (1) $4.41 \times 10^{-16} \text{ J atom}^{-1}$
 - (2) $-1.96 \times 10^{-17} \,\mathrm{J \ atom^{-1}}$
 - (3) $-2.2 \times 10^{-15} \,\mathrm{J \ atom^{-1}}$
 - (4) $8.82 \times 10^{-17} \,\mathrm{J \ atom^{-1}}$

- 39. The electrons identified by quantum numbers n and ℓ :
 - (1) n = 4, $\ell = 1$
- (2) n = 4, $\ell = 0$
- (3) $n = 3, \ell = 2$
- (4) n = 3, $\ell = 1$

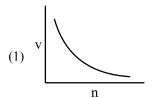
can be placed in order of increasing energy as: (for multielectron species)

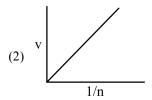
- (1) (3) < (4) < (2) < (1)
- (2) (4) < (2) < (3) < (1)
- (3) (2) < (4) < (1) < (3)
- (4) (1) < (3) < (2) < (4)
- If λ_0 and λ be the threshold wavelength and 40. wavelength of incident light, the velocity of photoelectron (having mass = m) ejected from the metal surface is:

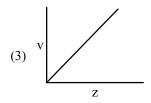
 - (1) $\sqrt{\frac{2h}{m}(\lambda_0 \lambda)}$ (2) $\sqrt{\frac{2hc}{m}(\lambda_0 \lambda)}$
 - (3) $\sqrt{\frac{2hc}{m}\left(\frac{\lambda_0 \lambda}{\lambda \lambda_0}\right)}$ (4) $\sqrt{\frac{2h}{m}\left(\frac{1}{\lambda_{00}} \frac{1}{\lambda_0}\right)}$
- 41. The total number of orbitals associated with the principal quantum number (n) = 5 is:
 - (1) 5

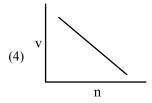
(2) 20

(3) 25


- (4) 10
- 42. If the shortest wavelength in Lyman series of hydrogen atom is A, then the longest wavelength in Paschen series of He⁺ is:
 - (1) $\frac{36A}{5}$
- (2) $\frac{9A}{5}$


(3) $\frac{5A}{0}$


- (4) $\frac{36A}{7}$
- 43. The electron in the hydrogen atom undergoes transition from higher orbit to orbit of radius 211.6 pm. This transition is associated with:
 - (1) Paschen series
- (2) Brackett series
- (3) Lyman series
- (4) Balmer series


- 44. If nitrogen atom had electronic configuration 1s⁷, it would have energy lower than that of the normal ground state configuration 1s² 2s² 2p³, because the electrons would be close to nucleus, yet 1s⁷ is not observed because it violates
 - (1) Heisenberg uncertainty principle
 - (2) Hund's rule
 - (3) Pauli's exclusion principle
 - (4) Bohr's postulate of stationary orbits.
- **45.** Match the following
 - (I) Energy of ground state of He⁺
 - (P) + 6.04 eV
 - (II) Potential energy of I orbit of H-atom
 - (Q) -27.2 eV
 - (III) Kinetic energy of II excited state of He⁺
 - (R) 54.4 V
 - (IV) Ionisation potential of He⁺
 - (S) 54.4 eV
 - (1) I (P), II (Q), III (R), IV (S)
 - (2) I (S), II (R), III (Q), IV (P)
 - (3) I (S), II (Q), III (P), IV (R)
 - (4) I (Q), II (R), III (P), IV (S)
- **46.** A 5g orbital has
 - (1) Zero angular node and zero radial node
 - (2) Zero radial node and two angular nodes
 - (3) 4 radial nodes and 4 angular nodes
 - (4) Zero radial node and 4 angular nodes
- 47. The threshold wavelength (λ_0) of sodium metal is 6500Å. If UV light of wavelength 360Å is used, what will be kinetic energy of the photoelectron in ergs?
 - (1) 55.175×10^{-12}
- (2) 3.056×10^{-12}
- (3) 52.119×10^{-12}
- (4) 48.66×10^{-10}
- 48. An electron in an atom jumps from one Bohr orbit to another in such a way that its kinetic energy changes from x to $\frac{x}{4}$. The change in
 - potential energy will be:
 - $(1) + \frac{3}{2}x$
- (2) $-\frac{3}{8}x$
- $(3) + \frac{3}{4}x$
- $(4) -\frac{3}{4}x$

49. Select the incorrect graph for velocity of e^- in a Bohr orbit VS. Z, $\frac{1}{n}$ and n:

- 50. An excited state of H-atom emits a photon of wavelength λ and returns to the ground state, the principal quantum number of excited state is given by:
 - (1) $\sqrt{\lambda R(\lambda R 1)}$
 - (2) $\sqrt{\frac{\lambda R}{(\lambda R 1)}}$
 - (3) $\sqrt{\lambda R(\lambda R 1)}$
 - (4) $\sqrt{\frac{(\lambda R 1)}{\lambda R}}$

51. The energy of a I, II and III energy levels of a certain atom are E, $\frac{4E}{3}$ and 2E respectively. A

photon of wavelength λ is emitted during a transition from III to I. What will be the wavelength of emission for transition II to I?

 $(1) \quad \frac{\lambda}{2}$

(2) λ

(3) 2λ

- (4) 3λ
- **52.** Calculate the minimum and maximum number of electrons which may have magnetic quantum number.

m = +1 and spin quantum number, $s = -\frac{1}{2}$ in chromium (Cr):

(1) 0, 1

(2) 1, 2

(3) 4, 6

- (4) 2, 3
- 53. Electromagnetic radiations of wavelength 242 nm is just sufficient to ionise sodium atom. Calculate the ionisation energy of sodium in kJ mol⁻¹.
 - (1) 495 kJ/mol
- (2) 821 kJ/mol
- (3) 136 kJ/mol
- (4) None
- **54.** Which set of quantum numbers is possible for the last electron of Mg⁺ ion -
 - (1) n=3, $\ell=2$, m=0, $s=\pm 1/2$
 - (2) n = 2, $\ell = 3$, m = 0, s = +1/2
 - (3) n = 1, $\ell = 0$, m = 0, s = +1/2
 - (4) n = 3, $\ell = 0$, m = 0, s = +1/2
- **55.** According to Bohr's atomic theory, which of the following is correct?
 - (1) Potential energy of electron $\propto \frac{Z^2}{n}$
 - (2) The product of velocity of electron and principle quantum number (n) $\propto Z^2$
 - (3) Frequency of revolution of electron in an orbit $\propto \frac{Z^2}{n^3}$

- (4) Coulombic force of attraction on the electron $\propto \frac{Z^2}{n^2}$
- **56.** Match List-I with List-II and select the correct answer using the codes given below the lists (ℓ and m are respectively the azimuthal and magnetic quantum no.)

	List-I		List-II
(I)	Number of	(P)	0, 1, 2,
	values of ℓ for		(n - 1)
	an energy level		
(II)	Value of ℓ for	(Q)	$+\ell$ to $-\ell$ through
	a particular		zero
	type of orbital		
(III)	Number of	(R)	5
	values of m for		
	$\ell = 2$		
(IV)	Value of 'm'	(S)	N
	for a particular		
	type of orbital		

- (1) I-S; II-P; III-Q; IV-R
- (2) I-S; II-P; III-R; IV-Q
- (3) I-P; II-S; III-Q; IV-R
- (4) I-P; II-S; III-R; IV-Q
- 57. Match List I with List II and select the correct answer using the code given below the lists:

 $E_n = \text{total energy}$ $\ell_n = \text{angular momentum}$

$$K_n = K.E.$$
, $V_n = P.E.$

 T_n = time period, r_n = radius of n^{th} orbit, for hydrogen-like species.

	List (I)		List (II)
(I)	$\frac{V_n}{K_n}$	(P)	$\frac{1}{2}$
(II)	$\ell_{\rm n} \propto {\rm n}^{\rm x}$, then x is:	(Q)	-2
(III)	$\frac{E_n}{V_n}$	(R)	-4
(IV)	$T_n \propto z^t n^3$, then t is:	(S)	1

- (1) I-Q; II-S; III-P; IV-Q
- (2) I-R; II-S; III-P; IV-Q
- (3) I-S; II-S; III-Q; IV-P
- (4) I-S; II-R; III-P; IV-Q

58. Match List I with List II and select the correct answer using the code given below the lists:

	List (I)		List (II)
(I)	Binding energy of 5 th excited state of Li ²⁺ sample	(P)	10.2 V
(II)	Ist excitation potential of H- atom	(Q)	3.4 eV
(III)	2 nd excitation potential of He ⁺ ion	(R)	13.6 eV
(IV)	I.E. of H-atom	(S)	48.4 V

- (1) I-R; II-P; III-S; IV-Q
- (2) I-S; II-P; III-Q; IV-R
- (3) I-Q; II-R; III-S; IV-P
- (4) I-Q; II-P; III-S; IV-R
- **59. Assertion:** Hydrogen has one electron in its orbit but it produces several spectral lines.

Reason: There are many excited energy levels available.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **60. Assertion:** The energy of an electron is largely determined by its principal quantum number.

Reason: The principal quantum number (n) is a measure of the most probable distance of finding the electron around the nucleus.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect

Integer Type Questions (61 to 75)

- 61. The shortest wavelength (in Å) in H spectrum of Lyman series when $R_H = 109678 \text{ cm}^{-1} \text{ is}$?
- **62.** In a sample of H-atom electrons make transition from 5th excited state to ground state, producing all possible types of photons, then number of lines in infrared region are?
- 63. The Uncertainty in position and velocity of a particle are 10^{-11} m and 5.27×10^{-24} ms⁻¹ respectively. Calculate the mass (in Kg) of the particle (h = 6.625×10^{-34} Joule sec.).
- 64. The maximum number of 3d-electrons having spin quantum number s = +1/2 are?
- **65.** A photon of wavelength 300 nm is absorbed by a gas and then emits two photons. One photon has a wavelength 496 nm then the wavelength of second photon in nm is? (nearest integer)
- **66.** If the energy of an electron in hydrogen atom is given by expression, $-1312/n^2$ kJ mol⁻¹, then the energy (in KJ/mol) required to excite the electron from ground state to second orbit is?
- 67. No. of different visible lines obtained when electrons return from 5th orbit to ground state in H spectrum?
- **68.** The numbers of d-electrons retained in Fe^{2+} (atomic number of Fe = 26) ion is

- 69. The wavelength (in nm) of the radiation emitted, when in a hydrogen atom electron falls from infinity to first stationary state would be (Rydberg constant = $1.097 \times 10^7 \text{ m}^{-1}$) [Nearest integer].
- 70. The 'spin-only' magnetic moment [in units of Bohr magneton (μ_{β})] of Ni²⁺ in aqueous solution is \sqrt{x} . The value of x would be? (Atomic number of Ni = 28)
- 71. The uncertainty in the position of a moving bullet of mass 10 gm is 10^{-5} . The uncertainty in its velocity is $X \times 10^{-29}$ m/sec. Find X to the nearest integer. (h = 6.625×10^{-34} Joule sec.).
- 72. The wavelength (λ) of monochromatic light coming from some light sources is listed below. How many of these sources will be able to exhibit photoelectric effect if incident upon

surface of Li metal (work function, $\phi = 2.4 \text{ eV}$).

Light Source	A	В	С	D	Е	F	G	Н	I
λ (nm)	1	2	3	4	5	6	7	8	9
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

- 73. For sodium atom, the number of electrons with m = 0, will be:
- 74. Number of radial nodes in 3s and 2p orbitals are x and y respectively. Calculate the value of (x + y).
- 75. A bulb emits light of wavelength 4500 Å. The bulb is rated as 150 watt and 8 percent of the energy is emitted as light. The number of photons emitted by the bulb per second is $n \times 10^{18}$. Find n to the nearest integer value.

03

CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

Single Option Correct Type Questions (01 to 60)

- 1. The first ionization energy of Al is smaller than that of Mg because:
 - (1) The atomic number of Al is greater than that of Mg.
 - (2) The atomic size of Al is less than that of Mg.
 - (3) Penetration of s-subshell electrons in case of Mg is greater than that of p-subshell in Al
 - (4) Mg has incompletely filled s-orbital.
- 2. Fluorine has the highest electronegativity among the ns² np⁵ group on the Pauling scale, but the electron affinity of fluorine is less than that of chlorine because:
 - (1) The atomic number of fluorine is less than that of chlorine
 - (2) Fluorine being the first member of the family behaves in an unusual manner.
 - (3) Chlorine can accommodate an electron better than fluorine by utilising its vacant 3d-orbital.
 - (4) Small size, high electron density and an increased electron repulsion makes addition of an electron to fluorine less favourable than that in the case of chlorine in isolated stage.
- **3.** Select correct statement about radius of an atom.
 - (1) Values of Van der Waal's radii are larger than those of covalent radii because the Van der Waal's forces are much weaker than the forces operating between atoms in a covalently bonded molecule.

- (2) The metallic radii are smaller than the van der Waal's radii, since the bonding forces in the metallic crystal lattice are much stronger than the van der Waal's forces.
- (3) Both (1) & (2) are correct.
- (4) None is correct.
- **4.** Match List I with List II and select the correct answer using the code given below the lists:

	List- I	List- II			
I	SO_2, NO_3^-, CO_3^{2-}	P	Semi-metals		
II	B, Si, Ge, As, Sb	Q	Isoelectronic species		
III	He, Ne, Ar, Kr, Xe	R	Van der waal's radii		
I V	$M(g) + energy \rightarrow M^+(g) + e^-$	S	Ionization energy		

- (1) I-Q; II-P; III-R; IV-S
- (2) I-P; II-Q; III-R; IV-S
- (3) I-Q; II-P; III-S; IV-R
- (4) I-R; II-P; III-Q; IV-S
- 5. Which of the following is/are generally true regarding effective nuclear charge (Z_{eff}):
 - (1) It increases on moving left to right in a period.
 - (2) It remains almost constant on moving top to bottom in a group.
 - (3) For isoelectronic species, as Z increases, Z_{eff} decreases.
 - (4) Both (1) and (2).

- 6. Thallium is more stable in '+1' oxidation state than '+3' oxidation state because:
 - (1) of its high reactivity
 - (2) of inert pair effect
 - (3) of its amphoteric nature
 - (4) its is a transition metal
- **7.** Which of the following has the largest ionic radius?
 - (1) Na⁺

(2) Cs^{+}

(3) Ca⁺

- (4) Mg^+
- **8.** Atomic radii of F & Ne (in Angstrom) are respectively given by:
 - (1) 0.72, 1.60
- (2) 1.60,1.6
- (3) 0.72, 0.72
- (4) 1.60, 0.72
- **9.** The first ionization energy is smallest for the atom with electronic configuration:
 - (1) $ns^2 np^6$
- (2) $ns^2np^4(3)$

ns² np⁵

- (4) ns² np³
- **10.** Which of the following orders are correct for the ionization energies?
 - (i) Ba < Sr < Ca
- (ii) $S^{-2} < S < S^{2+}$
- (iii) C < O < N
- (iv) Mg < Al < Si
- (1) i, ii and iv
- (2) i, iii and iv
- (3) i. ii and iii
- (4) i. ii. iii and iv
- **11.** For electron affinity of halogens which of the following is correct?
 - (1) Br > F
- (2) F > C1
- (3) Br < Cl
- (4) $F^- > I$
- 12. Which of the following pair of atoms will have the most negative electron gain enthalpy and which the least negative?
 - (1) F, Cl
- (2) Cl, F
- (3) S, Cl
- (4) Cl, P
- **13.** The electronegativity of the following elements increases in the order:
 - (1) C < N < Si < P
- (2) N < Si < C < P
- (3) Si < P < C < N
- (4) P < Si < N < C
- **14.** Which of the following is affected by the stable electron configuration of an atom?
 - (i) Electronegativity
 - (ii) Ionisation energy
 - (iii) Electron affinity

Correct answer is:

- (1) (i) only
- (2) (ii) only
- (3) (i) and (ii) both
- (4) (i),(ii) and(iii)
- 15. Which of the following pairs of elements belongs to representative group of elements in the periodic table?
 - (1) Aluminium and Magnesium
 - (2) Chromium and Zinc
 - (3) Argentum and Astatine
 - (4) Lanthanum and Thorium
- **16.** Element with electronic configuration as [Ar]¹⁸ 3d⁵ 4s¹ is placed in:
 - (1) I A, s-block
- (2) VI A, s-bloc
- (3) VI B, s-block
- (4) VI B, d-block
- 17. The statement that is not correct for the periodic classification of elements is:
 - (1) In d-block elements, the last electron enters in (n-1)d sub-shell.
 - (2) Non-metallic elements are lesser in number than metallic elements.
 - (3) The third period contains 8 elements and not 18 as 4th period contains.
 - (4) For transition elements, the d-subshells are filled with electrons monotonically with increase in atomic number.
- **18.** Which series of elements should have nearly the same atomic radii?
 - (1) Na, K, Rb
- (2) Fe, Co, Ni
- (3) Li, Be, B
- (4) F, Cl, Br
- 19. Which of the following statement is incorrect for the isoelectronic species?
 - (1) They have same number of electrons.
 - (2) Their ionic radii decrease with increase in nuclear charge.
 - (3) They have different number of protons.
 - (4) None of these
- **20.** The first ionization energy of 'O' is less than that of 'N' because:
 - (1) The former is more electronegative than later one.
 - (2) The former has partially filled electron configuration while later one has half-filled electron configuration.
 - (3) The former is bigger than that of later one.
 - (4) The former has less electron affinity than that of later one.

21. The successive ionization energies for an unknown element are:

 $IE_1 = 899 \text{ kJ/mol}$

 $IE_2 = 1757 \text{ kJ/mol}.$

 $IE_3 = 14,847 \text{ kJ/mol}.$

 $IE_4 = 17,948 \text{ kJ/mol}.$

To which family in the periodic table does the unknown element most likely belong?

- (1) Carbon family
- (2) Boron family
- (3) Alkaline earth metal family
- (4) Nitrogen family
- **22.** The order of first electron affinity of O, S and Se is:
 - (1) O > S > Se
- (2) S > Se > O
- (3) Se > O > S
- (4) S > O > Se
- **23.** Which of the following orders is incorrect?
 - (1) F > N > C > Si > Ga non-metallic character.
 - (2) F > Cl > O > N oxidising property.
 - (3) C < Si > P > N electron affinity value.
 - (4) None of these.
- **24.** The elements having very high ionization enthalpy but zero electron gain enthalpy is:
 - (1) H

(2) F

(3) He

- (4) Be
- **25.** Arrange Ce⁺³, La⁺³, Pm⁺³ and Yb⁺³ in increasing order of their ionic radii.
 - (1) $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$
 - (2) $Ce^{+3} < Yb^{+3} < Pm^{+3} < La^{+3}$
 - (3) $Yb^{+3} \le Pm^{+3} \le La^{+3} \le Ce^{+3}$
 - (4) $Pm^{+3} \le La^{+3} \le Ce^{+3} \le Yb^{+3}$.
- **26.** According to the periodic law of elements, the variation in properties of elements is related to their:
 - (1) Atomic masses
 - (2) Nuclear masses
 - (3) Atomic numbers
 - (4) Nuclear neutron-proton number
- **27.** Which one of the following groupings represents a collection of isoelectronic species?
 - (1) Na^+ , Ca^{2+} , Mg^{2+}
- (2) N^{3-} , F^{-} , Na
- (3) Be, Al^{3+} , Cl^{-}
- (4) Ca^{2+} , Cs^{+} , Br.

- **28.** Which one of the following ions has the highest value of ionic radius?
 - (1) Li^{+}

(2) B^{3+}

 $(3) O^{2-}$

- $(4) F^{-}$
- **29.** The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic step and then an endothermic step as shown below:

$$O_{(g)} + e^{-} \rightarrow O_{(g)}^{-}; \Delta H^{\circ} = -142 \text{ kJmol}^{-1}$$

$$O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$$
; $\Delta H^{\circ} = 844 \text{ kJmol}^{-1}$

This is because:

- (1) oxygen is more electronegative.
- (2) oxygen has high electron affinity.
- (3) O⁻ ion will tend to resist the addition of another electron.
- (4) O⁻ ion has comparatively larger size than oxygen atom.
- **30.** In which of the following arrangements the order is NOT according to the property indicated against it?
 - (1) $Al^{3+} < Mg^{2+} < Na^+ < F^-$ increasing ionic size
 - (2) B < C < N < O increasing first ionization enthalpy
 - (3) I < Br < F < Cl increasing electron gain enthalpy (with negative sign)
 - (4) Li < Na < K < Rb increasing metallic radius
- **31.** Which of the following factors may be regarded as the main cause of lanthanide contraction?
 - (1) Greater shielding of 5d electrons by 4f electrons.
 - (2) Poorer shielding of 5d electron by 4f electrons.
 - (3) Effective shielding of one of 4f electrons by another in the sub-shell.
 - (4) Poor shielding of one of 4f electron by another in the sub-shell.

- **32.** The lanthanide contraction is responsible for the fact that:
 - (1) Zr and Y have about the same radius
 - (2) Zr and Nb have similar oxidation state
 - (3) Zr and Hf have about the same radius
 - (4) Zr and Zn have same oxidation state.
- 33. The increasing order of the first ionization enthalpies of the elements B, P, S and F (lowest first) is:
 - (1) F < S < P < B
- (2) P < S < B < F
- (3) B < P < S < F
- (4) B < S < P < F
- **34.** The set representing the correct order of ionic radius is:
 - (1) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$
 - (2) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$
 - (3) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$
 - (4) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$
- **35.** The correct sequence which shows decreasing order of the ionic radii of the elements is:
 - (1) $A1^{3+} > Mg^{2+} > Na^{+} > F^{-} > O^{2-}$
 - (2) $Na^+ > Mg^{2+} > Al^{3+} > O^{2-} > F^-$
 - (3) $Na^+ > F^- > Mg^{2+} > O^{2-} > Al^{3+}$
 - (4) $O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$
- **36.** The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is:
 - (1) F > Cl > Br > I
- (2) Cl > F > Br > I
- (3) Br > Cl > I > F
- (4) I > Br > Cl > F
- **37.** The increasing order of the ionic radii of the given isoelectronic species is
 - (1) Cl⁻, Ca²⁺, K⁺, S²⁻
 - $(2) \ S^{2-},\, Cl^-,\, Ca^{2+},\, K^+$
 - $(3) \ Ca^{2+},\, K^{\scriptscriptstyle +}\,,\, Cl^{\scriptscriptstyle -}\,,\, S^{2-}$
 - (4) K⁺, S²⁻, Ca²⁺, Cl⁻
- **38.** Which of the following represents the correct order of increasing first ionization enthalpy for Ca, Ba, S, Se and Ar?
 - (1) Ca < S < Ba < Se < Ar
 - (2) S < Se < Ca < Ba < Ar
 - (3) Ba < Ca < Se < S < Ar
 - (4) Ca < Ba < S < Se < Ar

- **39.** The ionic radii (in Å) of N³⁻, O²⁻ and F⁻ are respectively:
 - (1) 1.36, 1.40 and 1.71
 - (2) 1.36, 1.71 and 1.40
 - (3) 1.71, 1.40 and 1.36
 - (4) 1.71, 1.36 and 1.40
- **40.** Which of the following atoms has the highest first ionization energy?
 - (1) Na

(2) K

(3) Sc

- (4) Rb
- **41.** The following statements concern elements in the periodic table. Which of the following is true?
 - (1) The Group 13 elements are all metals.
 - (2) All the elements in Group 17 are gases.
 - (3) Elements of Group 16 have lower ionization enthalpy values compared to those of Group 15 in the corresponding periods.
 - (4) For Group 15 elements, the stability of +5 oxidation state increases down the group.
- **42.** Identify the least stable ion amongst the following
 - (1) Li⁻

(2) Be⁻

(3) B⁻

- (4) C⁻
- **43.** The elements which exhibit both vertical and horizontal similarities are:
 - (1) Inert gas elements
 - (2) Representative elements
 - (3) Transition elements
 - (4) None of these
- **44.** Match List I (atomic number of the element) with List II (position in the periodic table) and select the correct answer using the codes given below the lists -

List- I		List- II	
I	52	P	s-block
II	56	Q	p-block
III	57	R	d-block
IV	60	S	f-block

- (1) I-Q; II-P; III-R; IV-S
- $(2) \quad I\text{-}Q \ ; \ II\text{-}P \ ; \ III\text{-}S \ ; \ IV\text{-}R$
- (3) I-P; II-Q; III-R; IV-S
- (4) I-P; II-Q; III-S; IV-R

- PARAKRAM JEE MAIN BOOKLET 45. In a given energy level, the order of penetration effect of different orbitals is: (1) f(2) s(3) f < d < p < s(4) s = p = d = f46. Which of the following elements can have negative oxidation states. (1) Al (2) Ca (3) Fe (4) B 47. Which of the following order of radii is correct: (1) $Li \le Be \le Mg$ (2) $H^+ < Li^+ < H^-$ (3) O < F < Ne(4) Li < Na < K < Cs < RbWhich of the following statement is correct 48. with respect to the property of elements in the carbon family with an increase in atomic number, their: (1) Atomic size increases (2) Ionization energy increases (3) Metallic character decreases
 - (4) Stability of + 4 oxidation state increases
- **49.** The second ionization enthalpies of elements are always higher than their first ionization enthalpies because:
 - (1) Cation formed always have stable half-filled or completely filled valence shell electron configuration.
 - (2) It is easier to remove electron from cation.
 - (3) Ionization is an endothermic process.
 - (4) The cation is smaller than its parent atom.
- **50.** The ionization enthalpy will be highest when the electron is to be removed from if other factors are equal:
 - (1) s-orbital
- (2) p-orbital
- (3) d-orbital
- (4) f-orbital
- **51.** With reference to 1st IP which of the following options are correct.
 - (a) Li < C
- (b) O < N
- (c) Be < N < Ne
- (1) a & b only
- (2) b & c only
- (3) a & c only
- (4) a, b & c

- **52.** Which one of the following statements is correct?
 - (1) The elements having large negative values of electron gain enthalpy generally act as strong oxidising agents.
 - (2) The elements having low values of ionisation enthalpies act as strong reducing agents.
 - (3) The formation of S²⁻(g) from S(g) is an endothermic process.
 - (4) All of these.
- **53. Assertion:** F atom has a less negative electron affinity than Cl atom.

Reason: Additional electrons are repelled more effectively by 3p electrons in Cl atom than by 2p electrons in F atom.

- (1) Both Assertion and Reason are true, and Reason is the correct explanation of Assertion.
- (2) Both Assertion and Reason are true, but Reason is not correct explanation of Assertion.
- (3) Assertion is true but Reason is false.
- (4) Assertion is false but Reason is true.
- **54. Assertion:** The first ionization energy of Be is greater than that of B.

Reason: 2p orbital is lower in energy than 2s.

- (1) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (2) Both Assertion and Reason are true but Reason is not correct explanation of Assertion.
- (3) Assertion is true but Reason is false.
- (4) Assertion is false but Reason is true.
- **55.** The correct set of decreasing order of electronegativity is:
 - (1) Li, H, Na
- (2) Na, H, Li
- (3) H, Li, Na
- (4) Li, Na, H
- **56.** The correct order of radii is:
 - (1) N < Be < B
- (2) $Mg^{2+} < Li^{+} < N^{3-}$
- (3) Na < Li < K
- (4) $Fe^{+3} < Fe^{2+} < Fe^{4+}$

- **57.** Which of the following element has maximum, first ionisation potential?
 - (1) V

(2) Ti

(3) Cr

- (4) Mn
- **58.** Minimum first ionisation energy is shown by which electronic configuration:
 - (1) $1s^2$, $2s^2$, $2p^5$
 - (2) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^2$
 - (3) $1s^2$, $2s^2$, $2p^6$, $3s^1$
 - (4) $1s^2$, $2s^2$, $2p^6$
- **59.** The high oxidising power of fluorine is due to:
 - (1) High electron affinity
 - (2) High ionization energy
 - (3) Both (1) and (2)
 - (4) None of these
- **60.** Which of the following pair of elements shows diagonal relationship?
 - (1) Li and Mg
- (2) Na and Mg
- (3) K and Mg
- (4) Al and Mg

Integer Type Questions (61 to 75)

- **61.** The number of elements present in fifth period of periodic table is
- 62. Atomic weight of Cl = 35.5 and of I = 127. According to Dobereiner's triads rule, atomic weight of Br will be approximately?
- 63. An element has atomic number 37. The Sum of period number and group number of this element is?
- 64. The number of element which cannot show the oxidation state of +3 among the following is/are?

Na, Zn, Fe, Mn, F, Mg, Al, Li

- 65. The sum of atomic numbers of the metallic and non-metallic elements which are liquid at room temperature respectively is
- **66.** Atomic number of the element from the following that can show +7 oxidation state is-

67. The Atomic number of the element unnilennium is?

- 68. The first ionisation potential of Metal M is 15 eV. If the value of electron gain enthalpy of M⁺ (in eV) is -x eV. Then x is
- **69.** The sum of group number, numbers of valence electrons and valency of an element with atomic number 15 is?
- 70. IE1 and IE2 of Mg are 178 and 348 Kcal mol⁻¹. The enthalpy required for the reaction Mg \rightarrow Mg²⁺ + 2e⁻ is (in Kcal mol⁻¹)
- 71. How many of the following statements related to the modern periodic table is/are **correct**?
 - (i) The p-block has 6 columns, because a maximum of 6 electrons can occupy all the orbitals in a p-subshell.
 - (ii) The d-block has 8 columns, because a maximum of 8 electrons can occupy all the orbitals in a d-subshell.
 - (iii) Each block contains a number of columns equal to the number of electrons that can occupy that subshell.
 - (iv) The block indicates value of azimuthal quantum number (l) for the last subshell that received electrons in building up the electronic configuration.
- **72.** How many of the following are the wrong statements?
 - (i) All the actinide elements are radioactive.
 - (ii) Alkali and alkaline earth metals are sblock elements.
 - (iii) Pnictogens and halogens are p-block elements.
 - (iv) The first member of the lanthanide series is lanthanum.
- **73.** How many of the following statements are correct?
 - (i) Generally, the radius trend and the ionization energy trend across a period are exact opposites.
 - (ii) Electron gain enthalpy values of elements may be exothermic (negative) or endothermic (positive).
 - (iii) The first ionization energy of sulphur is higher than that of phosphorus.
 - (iv) Te²⁻ > I⁻ > Cs⁺ > Ba²⁺ represents the correct decreasing order of ionic radii.

- **74.** How many of the following statement is/are correct?
 - (i) Density increases across the period from left to right while decreases down the group.
 - (ii) Ionization energy depends upon the type of orbital (of same energy level) from which electron is being removed.
 - (iii) Generally, electron affinity decreases down the group.

- (iv) Moving diagonally, the charge to size ratio remains nearly same for 2nd & 3rd period elements up to 14th group.
- **75.** The atomic number of the element from the following atomic number given below. That can not be accommodated in the present setup of the long form of the periodic table is

Atomic Number : 107, 118, 126, 102

CHAPTER

CHEMICAL BONDING

Single Option Correct Type Questions (01 to 60)

- 1. An ionic bond A⁺ B⁻ is most likely to be formed when:
 - (1) The ionization energy of A is high and the electron affinity of B is low
 - (2) The ionization energy of A is low and the electron affinity of B is high
 - (3) Both the ionization energy of A and the electron affinity of B is high
 - (4) Both the ionization energy of A and the electron affinity of B is low
- 2. Which of the following pair of elements form a compound with maximum ionic character?
 - (1) Na and F
- (2) Cs and F
- (3) Na and Br
- (4) Cs and I
- 3. Among Na⁺, Mg²⁺ and Al³⁺, the correct order of ease of formation of ionic compounds is:
 - (1) $Al^{3+} > Mg^{2+} > Na^+$
 - (2) $Na^+ > Mg^{2+} > Al^{3+}$
 - (3) $Mg^{2+} > Al^{3+} > Na^+$
 - (4) $Al^{3+} > Na^+ > Mg^{2+}$
- **4.** Which of the following have lowest lattice energy?
 - (1) Cs F
- (2) Cs Cl
- (3) Cs Br
- (4) Cs I
- 5. Which of the following is in order of increasing covalent character?
 - $(1) \quad CCl_4 < BeCl_2 < BCl_3 < LiCl$
 - (2) $LiCl < CCl_4 < BeCl_2 < BCl_3$
 - (3) LiCl < BeCl₂ < BCl₃ < CCl₄
 - $(4) \quad LiCl < BeCl_2 < CCl_4 < BCl_3$

- **6.** Which is most ionic according to Fajan's rule?
 - (1) AlF₃
- (2) Al₂O₃

(3) AlN

- (4) Al₄C₃
- **7.** Example of super octet molecule is:
 - (1) SF₆

(2) PCl₅

(3) IF₇

- (4) All of these
- **8.** Effective overlapping will be shown by:
 - (1) (1) + (1)
- (2) ++++
- (3) ⊕⊕+⊖⊕
- (4) All the above
- **9.** Indicate the wrong statement according to Valence bond theory:
 - (1) A sigma bond is stronger then π bond
 - (2) p-orbitals always have only sidewise overlapping
 - (3) s-orbitals never form π bonds
 - (4) There can be only one sigma bond between two atoms
- **10.** The ion which is not tetrahedral in shape is:
 - (1) BF_4^-
- (2) NH_4^+
- (3) XeO_4
- (4) ICl_4^-
- 11. Choose the molecules in which hybridisation occurs in the ground state?
 - (a) BCl₃
- (b) NH₂
- (c) PCl₃
- (d) BeF₂

The correct answer is:

- (1) a, b & d only
- (2) a, b & c only
- (3) b & c only
- (4) c & d only

(2) It is trigonal pyramidal.

12.	Which of the following compounds have bond angle as 90°?		(3) It is stronger lewis base than that of $(CH_3)_3N$.
	(1) CH_4 (2) CO_2		(4) It has a total of 9 sigma bonds.
12	(3) H_2O (4) SF_6 In which of the following pairs hybridisation of	19.	In which of the following set, the values of bond orders will be 2.5?
13.	the central atom is different?		(1) O ₂ ⁺ , NO, NO ²⁺ , CN
	(1) CIF ₃ , CIF ₃ O		(2) CN, NO ²⁺ , CN ⁻ , F ₂
	(2) CIF ₃ O, CIF ₃ O ₂		(3) O_2^+ , NO^{2+} , O_2^{2+} , CN^-
	(3) [CIF ₂ O] ⁺ , [CIF ₄ O] ⁻		$(4) O_2^{2-}, O_7^{-}, O_7^{+}, O_7$
	(4) [CIF ₄ O] ⁻ , [XeOF ₄]	20.	Pick out the incorrect statement.
14.	Which has the smallest bond angle $(X - S - X)$ in the given molecules?		(1) N_2 has greater dissociation energy than N_2^+
	(1) OSF2 (2) OSCl2		(2) O_2 has lower dissociation energy than O_2^+
	(3) $OSBr_2$ (4) OSI_2 .		(3) Bond length in N_2^+ is less than N_2
15.	Consider the following iodides:		(4) Bond length in NO ⁺ is less than in NO.
	PI_3 AsI_3 SbI_3	21.	Which the following molecules / species have
	102° 100.2° 99°		identical bond order and same magnetic
	The bond angle is maximum in PI ₃ , which is:		properties? (I) O_2^+ ; (II) NO;
	(1) Due to small size of phosphorus		(III) N_2^+
	(2) Due to more bp–bp repulsion in PI ₃		(11) N_2 (1) (I) and (II) only
	(3) Due to less electronegativity of P		(2) (I) and (III) only
	(4) None of these		(3) (I), (II) and (III)
16.	Electron deficient molecule among the		(4) (II) and (III) only
	following is: (1) I_2CI_6 (2) B_2H_6	22.	Of the following molecules, the one, which has permanent dipole moment, is:
	(3) Al_2Cl_6 (4) All of these		(1) SiF_4 (2) BF_3
17.	For BF ₃ molecule which of the following is		(3) PF_3 (4) PF_5
	true?	23.	The correct order of dipole moment is:
	(1) B-atom is sp ² hybridized.		(1) CH4 < NF3 < NH3 < H2O
	(2) There is a $p\pi-p\pi$ back bonding in this molecule.		$(2) NF_3 < CH_4 < NH_3 < H_2O$
	(3) Observed B-F bond length is found to be		$(3) NH_3 < NF_3 < CH_4 < H_2O$
	less than the expected bond length.		$(4) \ H_2O < NH_3 < NF_3 < CH_4$
40	(4) All of these	24.	Which one of the following molecules shows
18.	Which is the true statement about $(SiH_3)_3N$?		intramolecular H-bonding?
	(1) It is trigonal planar.		(1) H_2O (2) o-nitro phenol

(3) HF

(4) CH₃COOH

- 25. Which of the following compound has maximum number of H-bonds per mole?
 - (1) HF

(2) PH₂

(3) H₂O

- (4) OF₂
- 26. Assertion: Aluminium chloride in acidified aqueous solution forms octahedral $[Al(H_2O)_6]^{3+}$ ion.

Reason: In [Al(H₂O)₆]³⁺ complex ion, the 3d orbitals of Al are involved and the hybridization state of Al is sp^3d^2 .

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- 27. The correct order of increasing covalent character of the following is:
 - (1) $SiCl_4 > AlCl_3 < CaCl_3 < KCl$
 - (2) $KCl < CaCl_2 < AlCl_3 < SiCl_4$
 - (3) $AlCl_3 < CaCl_2 < KCl < SiCl_4$
 - (4) None of these
- 28. Which of the following species is diamagnetic in nature:
 - (1) NO

- (2) NO,
- (3) ClO₂
- (4) N_2O_4
- Which of the following overlaps is incorrect 29. [assuming z-axis to be the internuclear axis]?
 - (a) $2p_v + 2p_v \rightarrow \pi 2p_v$
 - (b) $2p_z + 2p_z \rightarrow \sigma 2p_z$
 - (c) $2p_x + 2p_x \rightarrow \pi 2p_x$
 - (d) $1s + 2p_v \rightarrow \pi(1s-2p_v)$
 - (1) 'a' & 'b' only
- (2) 'b' & 'd' only
- (3) only 'd'
- (4) None of these
- **30.** The type of hybrid orbitals used by chlorine atom in ClO⁻, ClO₂⁻, ClO₃⁻ and ClO₄⁻ is / are:
 - (1) sp, sp 2 , sp 3 and sp 3 d (2) sp and sp 3
 - (3) only sp^3
- (4) only sp

- 31. The structure of $IO_2F_2^-$ is analogous to:
 - (1) SF₄

- (2) XeO₂F₂
- (3) F₂SeO₂
- (4) (1) and (2) both
- 32. Incorrect order about bond angle is/are:
 - (1) $H_2O > H_2S > H_2Se > H_2Te$
 - (2) $C_2H_2 > C_2H_4 > CH_4 > NH_3$
 - (3) $NH_3 < H_2O < OF_2$
 - (4) $ClO_2 > H_2O > H_2S$
- 33. Which of the following statement is incorrect?
 - (1) During N_2^+ formation, one electron is removed from the bonding molecular orbital of N₂.
 - (2) During O₂⁺ formation, one electron is removed from the antibonding molecular orbital of O_2 .
 - (3) During O_2^- formation, one electron is added to the bonding molecular orbitals of O_{2} .
 - (4) During CN⁻ formation, one electron is added to the bonding molecular orbitals of CN.
- 34. According to Molecular orbital theory which of the following is correct?
 - (1) LUMO level for C_2 molecule is $\sigma 2p_x$ orbital
 - (2) In C_2 molecules, both the bonds are π
 - (3) In C_2^{2-} ion there is one σ and two π bonds
 - (4) All the above are correct
- 35. Which of the following statements is correct about N₂ molecule?
 - (1) It has a bond order of 3
 - (2) The number of unpaired electrons present in it is zero and hence it is diamagnetic
 - (3) The order of filling of MOs is $\pi(2p_x)$ $=\pi(2p_v), \sigma(2p_z)$
 - (4) All the above three statements are correct

36.	Which of the following would be expected to
	have a dipole moment of zero on the basis of
	symmetry?

- (1) SOCl₂
- (2) OF,
- (3) SeF₆
- (4) ClF₅
- 37. The dipole moment of HBr is 2.6×10^{-30} Cm and the interatomic spacing is 1.41 Å. The percentage of ionic character in HBr is:
 - (1) 10.5

(2) 11.5

(3) 12.5

- (4) 13.5
- **38.** The boiling point of p-nitrophenol is higher than that of o-nitrophenol because:
 - (1) NO₂ group at p-position behaves in a different way from that at o-position
 - (2) intramolecular hydrogen bonding exists in p-nitrophenol
 - (3) there is intermolecular hydrogen bonding in p-nitrophenol
 - (4) p-nitrophenol has a higher molecular weight than o-nitrophenol
- **39.** Density of ice is less than that of water because of:
 - (1) presence of Van der Waal interaction.
 - (2) crystal modification of ice.
 - (3) open porous cage like structure of ice due to H-bonding.
 - (4) different physical states of these.
- **40.** Which of the following compounds has the smallest bond angle in its molecule?
 - (1) SO_2

(2) H_2O

(3) H_2S

- (4) NH₃
- **41.** The pair of species having identical shapes for molecules of both species is:
 - (1) CF₄, SF₄
- (2) XeF_2 , CO_2
- (3) BF₃, PCl₃
- (4) PF₅, IF₅.
- 42. Which of the following pair of molecules will have permanent dipole moments for both members?
 - (1) SiF₄ and NO₂
 - (2) NO₂ and CO₂

- (3) NO_2 and O_3
- (4) SiF₄ and CO₂
- 43. The bond order in NO is 2.5 while that in NO⁺ is 3. Which of the following statements is true for these two species?
 - (1) bond length in NO⁺ is greater than in NO
 - (2) bond length in NO is greater than in NO⁺
 - (3) bond length in NO⁺ is equal to that in NO
 - (4) bond length is unpredictable
- **44.** The states of hybridization of boron and oxygen atoms in boric acid (H₃BO₃) are respectively:
 - (1) sp^2 and sp^2
 - (2) sp^2 and sp^3
 - (3) sp^3 and sp^2
 - (4) sp^3 and sp^3
- **45.** Which one of the following has the regular tetrahedral structure?
 - (1) XeF₄
- (2) SF₄
- (3) BF_4^-
- (4) $[Ni(CN)_4]^{2-}$
- **46.** The molecular shapes of SF_4 , CF_4 and XeF_4 are:
 - (1) The same with 2, 0 and 1 lone pairs of electrons on the central atom, respectively.
 - (2) The same with 1, 1 and 1 lone pair of electrons on the central atoms, respectively.
 - (3) Different with 0, 1 and 2 lone pairs of electrons on the central atom, respectively.
 - (4) Different with 1, 0 and 2 lone pairs of electrons on the central atom, respectively.
- **47.** Which one of the following species is diamagnetic in nature?
 - (1) He_{2}^{+}
- (2) H_2
- (3) H_2^+

- (4) H_2^- .
- **48.** In which of the following molecule/ion, all the bonds are not equal?
 - (1) SF₄

- (2) SiF₄
- (3) XeF₄
- (4) BF₄

- 49. The bond dissociation energy of B F in BF₃ is 646 kJ mol⁻¹ whereas that of C F in CF₄ is 515 kJ mol⁻¹. The correct reason for higher B F bond dissociation energy as compared to that of C F is:
 - (1) Stronger σ bond between B and F in BF₃ as compared to that between C and F in CF₄.
 - (2) Significant $p\pi$ $p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄.
 - (3) Lower degree of $p\pi$ $p\pi$ interaction between B and F in BF₃ than that between C and F in CF₄.
 - (4) Smaller size of B atom as compared to that of C atom.
- **50.** The hybridization of orbitals of N atom in NO_3^- , NO_2^+ and NH_4^+ are respectively:
 - (1) sp, sp 2 , sp 3
 - (2) sp^2 , sp, sp^3
 - (3) sp, sp 3 , sp 2
 - (4) sp^2, sp^3, sp
- **51.** Which of the following has maximum number of lone pairs associated with Xe?
 - (1) XeF₄
- (2) XeF₆
- (3) XeF₂
- (4) XeO₃
- **52.** Stability of the species Li₂, Li₂ and Li₂ increases in the order of:
 - (1) $\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$
 - (2) $Li_2^- < Li_2^+ < Li_2$
 - (3) $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$
 - (4) $Li_2^- < Li_2 < Li_2^+$
- **53.** Which of the following species is not paramagnetic?
 - (1) CO

(2) O₂

(3) B₂

(4) NO

- **54.** Amongst LiCl, RbCl, BeCl₂ and MgCl₂ the compounds with the greatest and the least ionic character respectively are:
 - (1) LiCl and RbCl
 - (2) RbCl and BeCl₂
 - (3) MgCl₂ and BeCl₂
 - (4) RbCl and MgCl₂
- **55.** Match List I with List II and select the correct answer using the codes given below the lists.

List- I			List- II (Shape)	
I	CS_2	P	Bent	
II	SO_2	Q	Linear	
III	BF ₃	R	Trigonal Planar	
IV	NH ₃	S	Tetrahedral	
		T	Trigonal pyramidal	

- (1) I-Q; II-P; III-R; IV-T
- (2) I-P; II-Q; III-R; IV-T
- (3) I-Q; II-P; III-T; IV-S
- (4) I-P; II-Q; III-T; IV-S
- **56.** Identify the correct match.

	List- I		List - II		
I	XeF ₂	P	Central atom has sp ³ hybridisation and bent shape.		
II	N ₃ ⁻	Q	Central atom has sp ³ d ² hybridisation and octahedral.		
II	PCl ₅ (s) anion	R	Central atom has sp hybridisation and linear shape.		
IV	I_2Cl_6 (ℓ) cation	S	Central atom has sp ³ d hybridisation and linear shape.		

- (1) I-P; II-Q; III-R; IV-S
- (2) I-S; II-Q; III-S; IV-R
- $(3) \ \ I\text{-}Q\ ;\ II\text{-}R\ ;\ III\text{-}P\ ;\ IV\text{-}S$
- (4) I-S; II-R; III-Q; IV-P

57. Match the species given in List-I with the type of hybridisation given in List-II.

List- I		List	: - II
Ι	$IO_2F_2^-$	P	sp^3d
II	F ₂ SeO	Q	sp ³
III	SO_2	R	sp^2
IV	XeF ₅ ⁺	S	$\mathrm{sp}^{3}\mathrm{d}^{2}$

(1) I-P; II-Q; III-R; IV-S

(2) I-P; II-Q; III-S; IV-R

(3) I-P; II-S; III-R; IV-P

(4) I-Q; II-P; III-R; IV-S

58. Assertion: In the bonding molecular orbital (MO) of H₂, electron density is increased between the nuclei.

Reason: The bonding MO is $\psi_A + \psi_B$, which shows destructive interference of the combining electron waves.

- (1) Assertion is correct, reason is incorrect.
- (2) Assertion is incorrect, reason is correct.
- (3) Assertion and reason are correct, but reason is not the correct explanation for the assertion.
- (4) Assertion and reason are correct and reason is the correct and reason is the correct explanation for the assertion.
- **59. Assertion:** NF₃ has little tendency to act as a donor molecule.

Reason: The highly electronegative F atoms attract electrons and these dipole moments partly cancel the dipole moment from the lone pair.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect

60. Assertion: Molecules having different hybridisation can have same shape.

Reason: The shape of a molecule does not depend on the hybridisation but it depends on the energy factor.

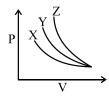
- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect

Integer Type Questions (61 to 75)

- **61.** Number of antibonding electrons in N_2 is:
- **62.** A simplified application of MO theory to the hypothetical molecule 'OF' would give its bond order as 'x'. Then '2x' is:
- 63. The dipole moment of HCl is 1.03 D. If H–Cl bond distance is 1.275 Å, what is the percentage of ionic character in the H–Cl bond. (Nearest integer)
- **64.** The number of electrons involved in the bond formation in N_2 molecule is:
- **65.** The covalency of nitrogen in HNO_3 is:
- **66.** Average bond order of C–C bond in C_6H_6 is 'x'. Then '10x' is:
- 67. In XeF₂, XeF₄ and XeF₆ (g), the number of lone pairs on Xe are x, y and z respectively. Find the value of

$$(x + y + z)$$

- **68.** The bond order of HeH⁺ is:
- **69.** Molecular AB has a bond length of 1.61 Å and a dipole moment of 0.38 D. The fractional charge on each atom (absolute magnitude) is 'x'. Find the value of '100 x'. (Nearest integer) $[e_0 = 4.802 \times 10^{-10} \text{ esu}]$


- **70.** The number of lone pair(s) of electrons on central atom in $XeOF_4$ is:
- **71.** How many of the following species are hypervalent?
 - (I) ClO₄-
- (II) BF₃
- (III) SO_4^{2-}
- (IV)CO₃²⁻
- 72. The total number of σ and π bonds in $C_2(CN)_4$ are:
- **73.** CO_2 is isostructural with how many of the following molecules.
 - (I) HgCl₂
- (II) SnCl₂
- (III) NO₂
- $(IV)C_2H_2$

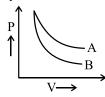
- **74.** For B_2H_6
 - S₁: Each boron is sp³ hybridised
 - **S2:** Four terminal 'H' & two 'B' atom are in same plane but two bridge hydrogen in different plane
 - S₃: It has 4σ bond & 2 bridge bond
 - **S4:** 8σ bonds are present in it
 - How many of these statements are true?
- 75. In PO4³⁻ ion, the formal charge on each oxygen atom and P- O bonds order are x, y respectively. Then find the magnitude of (y-x).

THERMODYNAMICS

Single Option Correct Type Questions (01 to 60)

- 1. P–V plots for three gases (assuming ideal behaviour and similar condition) for reversible adiabatic compression are given in the figure below:
 - Plots X, Y and Z should correspond to respectively:

- (1) CO₂ Cl₂ and Ne
- (2) SO₂, N₂O and He
- (3) He, N_2 and O_3
- (4) NH_{3.} H₂S and Ar
- 2. A reaction has $\Delta H = -33$ kJ and $\Delta S = -58$ J/K. This reaction would be:
 - (1) Spontaneous at all temperature
 - (2) Non-spontaneous at all temperatures
 - (3) Spontaneous above a certain temperature only
 - (4) Spontaneous below a certain temperature only
- 3. $\Delta S = \frac{q_{rev}}{T}$, so
 - (1) ΔS is defined only for reversible process.
 - (2) For irreversible process, ΔS is calculated by considering the irreversible.


- (3) For irreversible process, $A \rightarrow B$ and same process taking place reversible, ΔS is same.
- (4) ΔS_{sys} is always the for irreversible process.
- **4.** How many of the given statements are correct:
 - I: Molar entropy of a substance follows the order $(S_m)_{Solid} < (S_m)_{liquid} < (S_m)_{gas}$
 - II: Entropy change of system for the reaction $H_2(g) \longrightarrow 2H(g)$ is +ve.
 - **III:** Molar entropy of a non-crystalline solid will be zero at absolute zero temperature.
 - **IV:** If the path of an irreversible process is reversed, then both system and surroundings shall be restored to their original states.
 - V: Refractive index and molarity are intensive properties.
 - (1) 2

(2) 3

(3) 4

- (4) 5
- **5.** Among the following, an intensive property is:
 - (1) Mass
 - (2) Volume
 - (3) Surface tension
 - (4) Enthalpy
- **6.** A tightly closed thermos-flask contains some ice cubes. For a short period of time the system behaves as:
 - (1) Closed system
 - (2) Open system
 - (3) Isolated system
 - (4) Non-thermodynamic system

7. P-V plot for two gases (assuming ideal) during a reversible adiabatic processes are given in the figure. Plot A and plot B should correspond respectively to:

- (1) He and H_2
- (2) H₂ and He
- (3) He and Ne
- (4) H₂ and Cl₂
- 8. The relation of internal energy, enthalpy and work done can be represented (at constant pressure) by:
 - (1) $\Delta E = \Delta H + W$
- (2) $\Delta E = W \Delta H$
- (3) $\Delta H = \Delta E + W$
- (4) $W = \Delta E \Delta H$
- 9. The work done in adiabatic process on ideal gas by a constant external pressure would be:
 - (1) Zero
- (2) ΔE

(3) ΔH

- (4) ΔG
- 10. Predict which of the following reaction (s) has a positive entropy change?

I.
$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$$

- II. $NH_4Cl(s) \longrightarrow NH_3(g) + HCl(g)$
- III. $2NH_3(g) \longrightarrow N_2(g) + 3H_2(g)$
- (1) I and II
- (2) III
- (3) II and III
- If one mole of an ideal gas $\left(C_{p,m} = \frac{5}{2}R\right)$ is 11.

expanded isothermally at 300 K until it's volume is tripled, then change in entropy of gas is:

- (1) Zero
- (2) Infinity
- (3) $\frac{5}{2}$ R ln 3
- 12. Which of the following conditions regarding a chemical process ensures its spontaneity at all temperature?
 - (1) $\Delta H > 0$, $\Delta G < 0$ (2) $\Delta H < 0$, $\Delta S > 0$
 - (3) $\Delta H < 0, \Delta S < 0$ (4) $\Delta H > 0, \Delta S < 0$

- 13. In the exothermic reaction the enthalpy of reaction is always:
 - (1) Zero
- (2) Positive
- (3) Negative
- (4) None of these
- 14. Given that the molar heat capacity of ice is more than the molar heat capacity of water vapour. Let x and y be the magnitudes of the enthalpies of sublimation of ice at T₁ K and T₂ K such that $T_1 \le T_2$. Choose the correct options:
 - (1) x = y
 - (2) x > y
 - (3) x < y
 - (4) Cannot be determined
- 15. The standard heat of combustion of solid boron is equal to-
 - (1) $\Delta H_f^{\circ}(B_2O_3)$
- (2) $1/2 \Delta H^{\circ}_{f}(B_{2}O_{3})$
- (3) $2\Delta H^{\circ}_{f}(B_{2}O_{3})$
- (4) $1/2 \Delta H_f^{\circ}(B_2O_3)$
- 16. If $\Delta G = -177$ K cal for
 - (1) $2 \operatorname{Fe}(s) + \frac{3}{2} \operatorname{O}_2(g) \longrightarrow \operatorname{Fe}_2 \operatorname{O}_3(s)$ and ΔG = - 19 K cal for
 - (2) $4 \text{ Fe}_2\text{O}_3(s) + \text{Fe}(s) \longrightarrow 3 \text{ Fe}_3\text{O}_4(s)$

What is the Gibbs free energy of formation of Fe₃O₄?

- (1) + 229.6 kcal/mol
- (2) -242.3 kcal/mol
- (3) -727 kcal/mol
- (4) -229.6 kcal/mol
- In the reaction $CS_2(\ell) + 3O_2(g) \longrightarrow CO_2(g)$ 17. $+ 2SO_2(g) \Delta H = -265 \text{ kcal}$

The enthalpies of formation of CO_2 and SO_2 are both negative and are in the ratio 4:3. The enthalpy of formation of CS₂ is +26kcal/mol. Calculate the enthalpy of formation of SO₂.

- (1) 90 kcal/mol
- (2) 52 kcal/mol
- (3) 78 kcal/mol
- (4) 71.7 kcal/mol

- 18. One mole of an ideal diatomic gas ($C_v = 5$ cal) was transformed from initial 25°C and 1 L to the state when temperature is 100°C and volume 10 L. The entropy change of the process can be expressed as (R = 2 calories/mol/K)
 - (1) $3 \ln \frac{298}{373} + 2 \ln 10$
 - (2) $5 \ln \frac{373}{298} + 2 \ln 10$
 - (3) $7 \ln \frac{373}{298} + 2 \ln \frac{1}{10}$
 - (4) $5 \ln \frac{373}{298} + 2 \ln \frac{1}{10}$
- **19.** Identify the correct statement regarding a spontaneous process:
 - (1) Exothermic processes are always spontaneous.
 - (2) Lowering of energy in the reaction process is the only criterion for spontaneity.
 - (3) For a spontaneous process in an isolated system, the change in entropy is positive.
 - (4) Endothermic processes are never spotaneous
- 20. In conversion of lime-stone to lime, CaCO₃ (s)
 → CaO(s) + CO₂ (g) the values of ΔH° and ΔS° are +179.1 kJ mol⁻¹ and 160.2 J/K respectively at 298 K and 1 bar. Assuming that ΔH° and ΔS° do not change with temperature, temperature above which conversion of limestone to lime will be spontaneous is:
 - (1) 845 K
- (2) 1118 K
- (3) 1008
- (4) 1200 K
- **21.** Standard entropy of X_2 , Y_2 and XY_3 are 60, 40 and 50 JK⁻¹ mol⁻¹, respectively.

For the reaction, $\frac{1}{2}X_2 + \frac{3}{2}Y_2 \rightarrow XY_3 \Delta H = -30 \text{ kJ}$,

to be at equilibrium the temperature will be:

- (1) 500 K
- (2) 750 K
- (3) 1000 K
- (4) 1250 K
- **22.** In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is

$$CH_{3}OH\left(\ell\right)+\frac{3}{2}O_{2}\left(g\right)\longrightarrow CO_{2}(g)+2H_{2}O\left(\ell\right)$$

At 298 K, standard Gibb's energies of formation for CH₃OH (ℓ), H₂O (ℓ) and CO₂ (g) are -166.2, -237.2 and -394.4 kJ mol⁻¹ respectively. If standard enthalpy of combustion of methanol is -726kJ mol⁻¹, efficiency of the fuel cell will be:

- (1) 87%
- (2) 90%
- (3) 97%
- (4) 80%
- 23. For a particular reversible reaction at temperature T, ΔH and ΔS were found to be both positive. If T_e is the temperature at equilibrium, the reaction would be spontaneous when.
 - (1) $T_e > T$
- (2) $T > T_e$
- (3) T_e is 5 times T
- $(4) T = T_e$
- 24. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of 10 dm³ to a volume of 100 dm³ at 27°C is:
 - (1) $38.3 \text{ J mol}^{-1} \text{ K}^{-1}$
- (2) $35.8 \text{ J mol}^{-1} \text{ K}^{-1}$
- (3) $32.3 \text{ J mol}^{-1} \text{ K}^{-1}$
- (4) $42.3 \text{ J mol}^{-1} \text{ K}^{-1}$
- **25.** The value of enthalpy change (ΔH) for the reaction

 $C_2H_5OH_{(I)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(I)}$ at 27°C is -1366.5 kJ mol⁻¹. The value of internal energy change for the above reaction at this temperature will be:

- (1) -1369.0 kJ
- (2) -1364.0 kJ
- (3) -1361.5 kJ
- (4) -1371.5 kJ
- **26.** The incorrect expression among the following is:

$$(1) \quad \frac{\Delta G_{system}}{\Delta S_{total}} = -T$$

- (2) In isothermal process, $w_{reversible} = -nRT \ell n$ $\frac{V_f}{V_f}$
- (3) $lnK = \frac{\Delta H^o T\Delta S^o}{RT}$
- (4) $K = e^{-\Delta G^{\circ}/RT}$

- 27. A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of 37°C. As it does so, it absorbs 208 J of heat. The values of q and w for the process will be:
 - $(R = 8.314 \text{ J/mol K}) (\ln 7.5 = 2.01)$
 - (1) q = +208 J, w = -208 J
 - (2) q = -208 J, w = -208 J
 - (3) q = -208 J, w = +208 J
 - (4) q = +208 J, w = +208 J
- 28. The following reaction is performed at 298 K $2NO(g) + O_2(g) \stackrel{\sim}{=} 2NO_2(g)$

The standard free energy of formation of NO(g) is 86.6 kJ/mol at 298 K. What is the standard free energy of formation of NO₂(g) at 298 K? $(K_p = 1.6 \times 10^{12})$

- (1) R (298) in $(1.6 \times 10^{12}) 86600$
- (2) 86600 + R (298) $ln (1.6 \times 10^{12})$

(3)
$$86600 - \frac{\ln(1.6 \times 10^{12})}{R(298)}$$

(4)
$$0.5 [2 \times 86,600 - R (298) ln (1.6 \times 10^{12})]$$

29. Given,
$$C_{(graphite)} + O_2(g)$$

 $\longrightarrow CO_2(g)$; $\Delta_r H^o = -393.5 \text{ kJ mol}^{-1}$; $H_2(g)$
 $+\frac{1}{2}O_2(g) \longrightarrow H_2O(l)$; $\Delta_r H^o = -285.8 \text{ kJ}$

$$mol^{-1}$$
 ; $CO_2(g) + 2H_2O(l) \longrightarrow CH_4(g) + 2O_2(g)$; $\Delta_rH^o = +890.3 \text{ kJ mol}^{-1}$

Based on the above thermochemical equations, the value of $\Delta_r H^o$ at 298 K for the reaction:

 $C_{(graphite)} + 2H_2(g) \longrightarrow CH_4(g)$ will be:

- (1) $+144.0 \text{ kJ mol}^{-1}$
- (2) $-74.8 \text{ kJ mol}^{-1}$
- (3) $-144.0 \text{ kJ mol}^{-1}$
- (4) $+74.8 \text{ kJ mol}^{-1}$
- 30. The standard enthalpy of formation ($\Delta_f H^o_{298}$) for methane, CH₄ is -74.9 kJ mol⁻¹. In order to calculate the average energy given out in the formation of a C–H bond from this it is necessary to know which one of the following?

- (1) The dissociation energy of the hydrogen molecule, H₂ only
- (2) The first four ionization energies of carbon.
- (3) The dissociation energy of H₂ and enthalpy of sublimation of carbon (graphite).
- (4) The first four ionization energies of carbon and electron affinity of hydrogen.
- **31.** A reaction at 1 bar is non-spontaneous at low temperature but becomes spontaneous at high temperature. Identify the correct statement about the reaction among the following:
 - (1) Both ΔH and ΔS are positive.
 - (2) ΔH is negative while ΔS is positive.
 - (3) ΔH is positive while ΔS is negative.
 - (4) Both ΔH and ΔS are negative.
- 32. If 100 mole of H_2O_2 decompose at 1 bar and 300 K, the work done (kJ) by $O_2(g)$ as it expands against 1 bar pressure is:

$$2H_2O_2(l) \rightleftharpoons 2H_2O(l) + O_2(g)$$

 $(R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1})$

- (1) 498.00
- (2) 62.25
- (3) 124.50
- (4) 249.00
- 33. The enthalpy change on freezing of 1 mol of water at 5°C to ice at -5°C is:

(Given $\Delta_{\text{fus}}H = 6 \text{ kJ mol}^{-1} \text{ at } 0^{\circ}\text{C}, C_p (\text{H}_2\text{O}, 1)$ = 75.3 J mol⁻¹ K⁻¹, $C_p(\text{H}_2\text{O}, \text{s}) = 36.8 \text{ J mol}^{-1} \text{ K}^{-1}$)

- (1) 5.81 kJ mol^{-1}
- (2) 5.44 kJ mol⁻¹
- (3) 6.00 kJ mol^{-1}
- (4) 6.56 kJ mol⁻¹
- **34.** An ideal gas undergoes isothermal expansion at constant pressure. During the process, its:
 - (1) Enthalpy increases but entropy decreases.
 - (2) Enthalpy remains constant but entropy increases
 - (3) Enthalpy decreases but entropy increases.
 - (4) Both enthalpy and entropy remain constant.

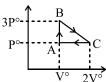
- **35.** In thermodynamics, a process is called reversible when -
 - (1) Surroundings and system change into each other
 - (2) There is no boundary between system and surroundings
 - (3) The surroundings are always in equilibrium with the system
 - (4) The system changes into the surroundings spontaneously
- **36. Statement-1:** For every chemical reaction at equilibrium, standard Gibbs energy of reaction is zero.

Statement-2: At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True. Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- **37. Statement-1:** There is a natural asymmetry between converting work to heat and converting heat to work.

Statement-2: No process is possible in which the sole result is the absorption of heat form a reservoir and its complete conversion into work

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- **38.** Which of the following is not a state function
 - (1) ΔS


(2) ΔG

(3) ΔH

(4) ΔQ

- 39. The molar heat capacities at constant pressure (assumed constant with respect to temperature) at A,B and C are in ratio of 3:1.5:2.0 The enthalpy change for the exothermic reaction $A+2B\longrightarrow 3C$ at 300 K and 310 K is ΔH_{300} and ΔH_{310} respectively then:
 - (1) $\Delta H_{300} > \Delta H_{310}$
 - (2) $\Delta H_{300} < \Delta H_{310}$
 - (3) $\Delta H_{300} = \Delta H_{310}$
 - (4) If $T_2 > T_1$ then $\Delta H_{310} > \Delta H_{300}$ and if $T_2 < T_1$ then $\Delta H_{310} < \Delta H_{300}$
- 40. When 1.0 g of oxalic acid (H₂C₂O₄) is burned in a bomb calorimeter whose heat capacity is 8.75 kJ/K, the temperature increases by 0.312 K. The enthalpy of combustion of oxalic acid at 27°C is:
 - (1) -245.7 kJ/mol
 - (2) -244.452 kJ/mol
 - (3) -246.947 kJ/mol
 - (4) -241.958
- **41.** Which statement regarding entropy is correct?
 - (1) A completely ordered deck of cards has more entropy than a shuffled deck in which cards are arranged randomly.
 - (2) A perfect ordered crystal of solid nitrous oxide has more entropy than a disordered crystal in which the molecules are oriented randomly.
 - (3) 1 mole N₂ gas at STP has more entropy than 1 mole N₂ gas at 273 K in a volume of 11.2 litre.
 - (4) 1 mole N_2 gas at STP has more entropy than 1 mole N_2 gas at 273 K and 0.25 atm.
- 42. The enthalpy change (ΔH) for the reaction of 50 mL of ethylene with 50.0 mL of H₂ at 1.5 atm pressure is -0.31 KJ. What is the change in internal energy (ΔE) in KJ?
 - (1) 0.3024
- (2) 0.6048
- (3) -0.1.2
- (4) -0.24

43. One mole of ideal monoatomic gas is carried through the reversible cyclic process as shown in figure. Calculate net heat absorbed by the gas in the path BC.

- $(1) \quad \frac{1}{2} P^{\circ} V^{\circ}$
- $(2) \quad \frac{7}{2} P^{\circ} V^{\circ}$
- (3) 2 P°V°
- $(4) \quad \frac{5}{2} P^{\circ} V^{\circ}$
- **44.** ΔH^{o}_{f} of water is $-285.8 \text{ kJ mol}^{-1}$. if enthalpy of neutralization of monoacid strong base is $-57.3 \text{ kJ mol}^{-1}$, ΔH_{f}^{o} of OH^{-} ion will be
 - (1) $-228.5 \text{ kJ mol}^{-1}$
- (2) 228.5 kJ mol⁻¹
- (3) 114.5 kJ mol⁻¹
- (4) $-114.5 \text{ kJ mol}^{-1}$
- **45.** One gram sample of oxygen undergoes free expansion from 0.75 L to 3.0 L at 298 K. Find the correct option.
 - (1) $\Delta S = 0.36 \text{ JK}^{-1}$
- (2) W = 227.97 J
- (3) q = -227.97 J
- (4) $\Delta H = 107.28 \text{ J}$
- **46.** The entropy change in the fusion of one mole of a solid melting at 27°C (latent heat of fusion is 2930 J mol⁻¹) is:
 - (1) 9.77 JK⁻¹ mol⁻¹
- (2) 10.73 JK⁻¹ mol⁻¹
- (3) 2930 JK⁻¹ mol⁻¹
- (4) 108.5 JK⁻¹ mol⁻¹
- **47.** Enthalpy of the reaction,

 $CH_4 + \frac{1}{2}O_2 \longrightarrow CH_3OH$ is negative. If the

magnitude of enthalpy of combustion of CH₄ and CH₃OH are x and y respectively, then which relation is correct?

- $(1) \quad x > y$
- (2) x < y
- $(3) \quad x = y$
- $(4) \ \ x \ge y$
- 48. In a closed insulated container a liquid is stirred with a paddle to increase the temperature, which of the following is true?
 - (1) $\Delta E = W \neq 0, q = 0$
 - (2) $\Delta E = W = 0, q \neq 0$

- (3) $\Delta E = 0, W = q \neq 0$
- (4) W = 0, $\Delta E = q \neq 0$
- **49.** The molar heat capacity 'C' of water at constant pressure is 75 JK⁻¹ mol⁻¹, when 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increase in temperature of water is:
 - (1) 4.8 K
- (2) 6.6 K
- (3) 1.2 K
- (4) 2.4 K
- **50.** For the reaction,

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(\ell)$$

at constant temperature, $\Delta H - \Delta E$ is:

- (1) + 3RT
- (2) RT
- (3) + RT
- (4) 3RT
- 51. If the bond energies of H–H, Br–Br and H–Br are 433, 192 and 364 kJ mol⁻¹ respectively, then ΔH^o for the reaction $H_2(g) + Br_2(g) \longrightarrow 2HBr(g)$ is:
 - (1) 261 kJ
- (2) + 103 kJ
- (3) + 261 kJ
- (4) 103 kJ
- **52.** Considering entropy (S) as a thermodynamic parameter, the criterion for the spontaneity of any process is:
 - (1) $\Delta S_{system} + \Delta S_{surrounding} > 0$
 - $(2) \ \Delta S_{system} \Delta S_{surrounding} > 0$
 - (3) $\Delta S_{\text{system}} > 0$ only
 - (4) $\Delta S_{\text{surrounding}} > 0$ only
- **53.** A reaction occurs spontaneously if:
 - (1) $T\Delta S < \Delta H$ and both ΔH and ΔS are +ve
 - (2) $T\Delta S > \Delta H$ and both ΔH and ΔS are +ve
 - (3) $T\Delta S = \Delta H$ and both ΔH and ΔS are +ve
 - (4) $T\Delta S > \Delta H$ and ΔH is + ve and ΔS is -ve
- **54.** The absolute enthalpy of neutralisation of the reaction,

$$MgO(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2O\left(\ell\right)$$

will be:

- (1) Less than $-57.33 \text{ kJ mol}^{-1}$
- (2) $-57.33 \text{ kJ mol}^{-1}$
- (3) Greater than $-57.33 \text{ kJ mol}^{-1}$
- (4) 57.33 kJ mol⁻¹

- 55. Assume each reaction is carried out in an open container. For which reaction will $\Delta H = \Delta E$?
 - (1) $H_2(g) + Br_2(g) \longrightarrow 2HBr(g)$
 - (2) $C(s) + 2H_2O(g) \longrightarrow 2H_2(g) + CO_2(g)$
 - (3) $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$
 - (4) $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$
- 56. List-I and List-II contains four entries each. Entries of List-II are to be matched with some entries of List-II. Select the correct answer using the code given below the lists:

	List- I	List- II		
Ι	Reversible cooling of an ideal gas at constant volume	P	w = 0; $q < 0$; $\Delta U < 0$	
II	Reversible isothermal expansion of an ideal gas	Q	w < 0; q > 0; $\Delta U > 0$	
III	Adiabatic expansion of non- ideal gas into vacuum	R	w = 0; $q = 0$; $\Delta U = 0$	
IV	Reversible melting of sulphur at normal melting point	S	w < 0; q > 0; $\Delta U = 0$	

- (1) I-P; II-S; III-R; IV-Q
- (2) I-P; II-S; III-S; IV-Q
- (3) I-S; II-P; III-R; IV-Q
- (4) I-P; II-R; III-R; IV-Q
- 57. Match List I with List II and select the correct answer using the code given below the lists:

List- I			t- II
I	Adiabatic process	P	q = 0
II	Isothermal process	Q	$\Delta H = 0$
III	Isoethalpic process	R	$\Delta T = 0$
IV	Isoentropic process	S	$\Delta S = 0$

- (1) I-R; II-R; III-Q; IV-S
- (2) I-P; II-R; III-Q; IV-Q
- $(3) \ \ I\text{-P} \ ; II\text{-R} \ ; III\text{-Q} \ ; IV\text{-S}$
- (4) I-P; II-R; III-S; IV-S

58. Assertion: The enthalpy of formation of H_2O (ℓ) is greater than of H_2O (g) in magnitude.

Reason: Enthalpy change is negative for the condensation reaction

$$H_2O(g) \longrightarrow H_2O(\ell)$$

- (1) Both assertion and reason are correct; and the reason is the correct explanation for the assertion.
- (2) Both assertion and reason are correct; but the reason is not the correct explanation for the assertion.
- (3) Assertion is incorrect, reason is correct.
- (4) Both the assertion and reason are incorrect.
- **59. Assertion:** Entropy change in reversible adiabatic expansion of an ideal gas is zero.

Reason: The increase in entropy due to volume increase just compensate the decrease in entropy due to fall in temperature.

- (1) Both assertion and reason are correct; and the reason is the correct explanation for the assertion.
- (2) Both assertion and reason are correct; but the reason is not the correct explanation for the assertion.
- (3) Assertion is incorrect, reason is correct.
- (4) Both the assertion and reason are incorrect.
- **60. Assertion:** Increase of free energy during the process under constant temperature and pressure provides a measure of its spontaneity.

Reason: A spontaneous change must have + ve sign of ΔS_{system} .

- (1) Both assertion and reason are correct; and the reason is the correct explanation for the assertion.
- (2) Both assertion and reason are correct; but the reason is not the correct explanation for the assertion.
- (3) Assertion is incorrect, reason is correct.
- (4) Both the assertion and reason are incorrect.

Integer Type Questions (61 to 75)

- 61. A gas expands isothermally against a constant external pressure of 1 atm from a volume of 10- dm 3 to a volume of 20 dm 3 . It absorbs 800 J of thermal energy from its surroundings. The magnitude of ΔU (in J) is:
 - [Given, 1 atm-litre = 101.3 Joules]
- **62.** Two molecules of an ideal gas expand spotaneously into vacuum. The work done (in Joule) is:
- 63. AB, A₂ and B₂ are diatomic molecules. If the bond enthalpies of A₂, AB & B₂ are in the ratio 1:1:0.5 and enthalpy of formation of AB from A₂ and B₂ is − 100 kJ/mol. What is the bond enthalpy of A₂ (in KJ/mol).
- 64. Enthalpy of polymerization of ethylene, as represented by the reaction, nCH₂=CH₂ → (-CH₂-CH₂-)_nis −100 kJ per mole of ethylene. Given bond enthalpy of C=C bond is 600 kJ mol⁻¹, magnitude of enthalpy of C-C bond (in kJ mol⁻¹) will be:
- **65.** Consider the reaction at 300 K

$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$

 $\Delta H^{o} = -185 \text{ kJ}$

If 2 moles of H_2 completely react with 2 mole of Cl_2 to form HCl. What is the magnitude of ΔU^o (in KJ) for this reaction?

- 66. Assuming that water vapour is an ideal gas, the internal energy change (ΔU) in KJ/mol when 1 mol of water is vapourised at 1 bar pressure and 100°C. (Nearest integer)
 - (Given: Molar enthalpy of vaporization of water at 1 bar and 373 K = 41 kJ mol⁻¹ and R = $8.3 \text{ J mol}^{-1} \text{ K}^{-1}$) will be:
- 67. The standard enthalpy of formation of NH₃ is 46.0 kJ mol⁻¹. If the enthalpy of formation of H₂ from its atoms is 436 kJ mol⁻¹ and that of

- N_2 is -712 kJ mol⁻¹, the average bond enthalpy of N-H bond in NH_3 in KJ/mol is
- 68. One mole of a non-ideal gas undergoes a change of state (2.0 atm, 3.0 L, 95 K) \rightarrow (4.0 atm, 5.0 L, 245 K) with a change in internal energy, $\Delta U = 30.0$ L atm. The change in enthalpy (ΔH) of the process in L atm is -
- 69. 2 moles of ideal gas is expanded isothermally & reversibly from 1 litre to 10 litre. Find the enthalpy change in kJ mol⁻¹.
- 70. Given that bond energies of H–H and Cl–Cl are 430 KJ mol⁻¹ and 240 KJ mol⁻¹ respectively and ΔH_f for HCl is
 - 90 KJ mol⁻¹. Bond enthalpy of HCl (in KJ mol⁻¹) is
- 71. Enthalpy of neutralization of CH₃COOH by NaOH is–50.6 kJ/mol and the heat of neutralization of a strong acid with NaOH is 55.9 kJ/mol. The value of ΔH for the ionization of CH₃COOH is x kJ/mol. Find the value of 10x.
- 72. The heats of combustion of carbon and carbon monoxide are -393.5 and -283.5 kJ mol⁻¹, respectively. The magnitude of heat of formation (in kJ) of carbon monoxide per mole is:
- 73. For the reaction, $A(g)+B(g) \rightarrow C(g) + D(g)$, ΔH° and ΔS° are, respectively, $-29.8 \text{ kJ mol}^{-1}$ and $-0.100 \text{ kJ K}^{-1} \text{ mol}^{-1}$ at 298 K. The equilibrium constant for the reaction at 298 K is:
- **74.** For the reaction:

 $X_2O_4(1) \rightarrow 2XO_2(g)$

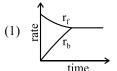
 $\Delta U = 2.1 \text{ k cal}, \Delta s = 20 \text{ cal } \text{K}^{-1} \text{ at } 300 \text{ K}$

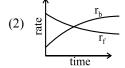
Hence, the magnitude of ΔG (in calories) is:

75. The enthalpy of combustion of H_2 , cyclohexene (C_6H_{10}) and cyclohexane (C_6H_{12}) are -241, -3800 and -3920 kJ per mol respectively. The magnitude of heat of hydrogenation of cyclohexene (in KJ/mol) is:

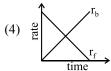
CHAPTER

CHEMICAL EQUILIBRIUM


Single Option Correct Type Questions (01 to 60)


1. $\log \frac{K_p}{K_c} + \log RT = 0$ is a relationship for the

reaction:


- (1) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
- (2) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
- (3) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
- (4) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- 2. In a chemical equilibrium, the rate constant for the backward reaction is 7.5×10^{-4} and the equilibrium constant is 1.5 the rate constant for the forward reaction is:
 - (1) 2×10^{-3}
 - (2) 5×10^{-4}
 - (3) 1.12×10^{-3}
 - $(4) 9.0 \times 10^{-4}$
- 3. At 1000 K, the value of K_p for the reaction, $A(g) + 2B(g) \rightleftharpoons 3C(g) + D(g)$ is 0.05 atmosphere. The value of K_C in terms of R would be:
 - (1) 20000 R
 - (2) 0.02 R
 - (3) $5 \times 10^{-5} \text{ R}$
 - (4) $5 \times 10^{-5} \times R^{-1}$
- **4.** Rate of reaction curve for equilibrium can be like:

 $[r_f = forward rate, r_b = backward rate]$

- 5. The equilibrium constant of the reaction $SO_2(g)$ + $\frac{1}{2}O_2(g)$ \longrightarrow $SO_3(g)$ is 4×10^{-3} atm^{-1/2}. The equilibrium constant of the reaction $2SO_3(g)$ \longrightarrow $2SO_2(g) + O_2(g)$ would be:
 - (1) 250 atm
- (2) 4×10^3 atm
- (3) 0.25×10^4 atm
- (4) 6.25×10^4 atm
- **6.** When alcohol (C_2H_5OH) and acetic acid are mixed together in equimolar ratio at 27°C , 33% is converted into ester. Then the K_C for the equilibrium

 $C_2H_5OH(\ell) + CH_3COOH(\ell) \rightleftharpoons CH_3COOC_2H_5$

- (ℓ) + H₂O(ℓ).
- (1) 4

(2) 1/4

(3) 9

(4) 1/9

- 7. 1.50 moles each of hydrogen and iodine were placed in a sealed 10 litre container maintained at 717 K. At equilibrium, 1.25 moles each of hydrogen and iodine were left behind. The equilibrium constant, K_c for the reaction. $H_2(g)$ $+ I_2(g) \rightleftharpoons 2HI(g)$ at 717 K is

 - (1) 0.4

(2) 0.16

(3) 25

- (4) 50
- 8. A reaction mixture containing H₂, N₂ and NH₃ has partial pressure 2 atm, 1 atm and 3 atm respectively at 725 K. If the value of K_P for the reaction, $N_2 + 3H_2 \longrightarrow 2NH_3$ is 4.28×10^{-5} atm⁻² at 725 K, in which direction the net reaction will go:
 - (1) Forward
 - (2) Backward
 - (3) No net reaction
 - (4) Direction of reaction cannot be predicted
- 9. For the reaction,

$$2A + B = 3C \text{ at } 298 \text{ K}, K_C = 49$$

A 3L vessel contains 2, 1 and 3 moles of A, B and C respectively. The reaction at the same temperature

- (1) Must proceed in forward direction
- (2) Must proceed in backward direction
- (3) Must be equilibrium
- (4) Cannot be predicted
- In a container equilibrium $N_2O_4(g) \rightleftharpoons 2NO_2$ 10.
 - (g) is attained at 25°C. The total equilibrium pressure in container is 380 torr. If equilibrium constant of above equilibrium is 0.667 atm, then degree of dissociation of N2O4 at this temperature will be

- Consider the reactions 11.
 - (i) $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$
 - (ii) $N_2O_4(g) \Longrightarrow 2NO_2(g)$

The addition of an inert gas at constant volume

- (1) Will increase the dissociation of PCl₅ as well as N2O4
- (2) Will reduce the dissociation of PCl₅ as well as N₂O₄
- (3) Will increase the dissociation of PCl₅ and step up the formation of NO₂
- (4) Will not disturb the equilibrium of the reactions
- 12. Match the following:

List- I		List- II		
(Assume only				
reactant were				
pı	resent initially)			
I	For the	P	Forward shift	
	equilibrium			
	$NH_4I(s)$			
	$NH_3(g) + HI(g),$			
	if pressure is			
	increased at			
	equilibrium			
II	For the	Q	No shift in	
	equilibrium		equilibrium	
	$H_2O(g) + CO(g)$			
	\longrightarrow H ₂ (g) +			
	$CO_2(g)$			
	inert gas is			
	added at			
	constant			
	pressure at			
	equilibrium			
III	For the	R	Backward	
	equilibrium		shift	
	$PCl_5 \rightleftharpoons PCl_3$			
	+ Cl ₂			
	Cl ₂ is removed			
	at equilibrium.			

- (1) I-R; II-Q; III-P
- (2) I-Q; II-R; III-P
- (3) I-P; II-Q; III-R
- (4) I-P; II-R; III-Q

- 13. The dissociation of CO_2 can be expressed as $2CO_2 \rightleftharpoons 2CO + O_2$. If the 2 moles of CO_2 is taken initially and 40% of the CO_2 is dissociated equilibrium then total number of moles at equilibrium:
 - (1) 2.4

(2) 2.0

(3) 1.2

- (4) 5
- 14. In the reaction $2P(g) + Q(g) \rightleftharpoons 3R(g) + S(g)$. If 2 moles each of P and Q taken initially in a 1 litre flask. At equilibrium which is true:
 - (1) [P] < [Q]
- (2) [P] = [Q]
- (3) [Q] = [R]
- (4) None of these
- 15. For the reaction: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$;

equilibrium constant
$$K_c = \frac{[NH_3]^2}{[N_2] [H_2]^3}$$

Some reactions are written bellow in List I and their equilibrium constants in terms of K_c are written in List II. Match the following reactions with the corresponding equilibrium constant

List- I (Reaction)		List- II (Equilibrium Constant)	
Ι	$2N_2(g) + 6H_2(g) \rightleftharpoons$ $4NH_3(g)$	P	$K_c^{\frac{1}{2}}$
II	$2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$	Q	$\frac{1}{K_c}$
III	$\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$ $\rightleftharpoons NH_3(g)$	R	K _c ²

- (1) I-P; II-R; III-Q
- $(2) \ \ I\text{-}Q\ ; II\text{-}R\ ; III\text{-}P$
- (3) I-P; II-Q; III-R
- (4) I-R; II-Q; III-P
- 16. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

In above reaction, at equilibrium condition mole fraction of PCl_5 is 0.4 and mole fraction of Cl_2 is 0.3. Then find out mole fraction of PCl_3

(1) 0.3

(2) 0.7

(3) 0.4

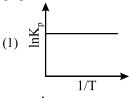
(4) 0.6

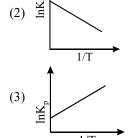
- 17. 5 moles of SO₂ and 5 moles of O₂ are allowed to react to form SO₃ in a closed vessel. At the equilibrium stage, 60% SO₂ is used up. The total number of moles of SO₂, O₂ and SO₃ in the vessel now is:
 - (1) 3.9

(2) 10.5

(3) 8.5

- (4) 10.0
- **18.** A mixture of NO₂ and N₂O₄ has a vapour density of 38.3 at 300 K. What is the number of moles of NO₂ in 100 g of the mixture?
 - (1) 0.043
- (2) 4.4


(3) 3.4


- (4) 0.437
- 19. In an equilibrium reaction for which $\Delta G^{\circ} = 0$, the value of equilibrium constant K =
 - (1) 0

(2) 1

(3) 2

- (4) 10
- **20.** An exothermic reaction is represented by the graph:

- (4) None of these
- **21.** A reaction in equilibrium is represented by the following equation—

 $2A_{(s)} + 3B_{(g)} \Longrightarrow 3C_{(g)} + D(g) + O_2(g)$ if the pressure on the system is reduced to half of its original value

- (1) The amounts of C and D decreases
- (2) The amounts of C and D increases
- (3) The amount of B and D decreases
- (4) All the amounts remain constant

- 22. In which of the following equilibrium reactions, the equilibrium would shift to right side, if total pressure is decreased:
 - (1) $N_2 + 3H_2 \rightleftharpoons 2NH_3$
 - (2) $H_2 + I_2 \rightleftharpoons 2HI$
 - (3) $N_2O_4 \rightleftharpoons 2NO_2$
 - (4) $H_2 + Cl_2 \rightleftharpoons 2HCl$
- 23. For an equilibrium $H_2O(s) \rightleftharpoons H_2O(\ell)$ which of the following statements is true.
 - (1) The pressure changes do not affect the equilibrium
 - (2) More of ice melts if pressure on the system is increased
 - (3) More of liquid freezes if pressure on the system is increased
 - (4) The degree of advancement of the reaction does not depend on pressure.
- 24. In the Haber process for the industrial manufacture of ammonia involving the reaction.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 200 atm pressure

in the presence of a catalyst, a temperature of about 500°C is used. This is considered as optimum temperature for the process because

- (1) Yield is maximum at this temperature
- (2) Catalyst is active only at this temperature
- (3) Energy needed for the reaction is easily obtained at this temperature
- (4) Rate of the catalytic reaction is fast enough while the yield is also appreciable for this exothermic reaction at this temperature.
- $aA + bB \rightleftharpoons cC + dD$ 25.

In the above reaction at low pressure and high temperature, conditions are such that reaction is shifted in backward direction. So, correct set:

- (1) $(a+b) > (c+d), \Delta H > 0$
- (2) $(a + b) < (c + d), \Delta H > 0$
- (3) $(a+b) < (c+d), \Delta H < 0$
- (4) (a+b) > (c+d). $\Delta H < 0$

26. Consider the two gaseous equilibrium involving SO₂corresponding and the equilibrium constant at 299 K

$$SO_2(g) + 1/2O_2(g) \longrightarrow SO_3(g)$$
; K_1

$$4SO_{3}(g) \Longrightarrow 4SO_{2}(g) + 2O_{2}(g)$$
; K_{2}

The value of the equilibrium constant are related by:

(1)
$$K_2 = \frac{1}{(K_1)^4}$$
 (2) $K_2 = K_1^4$

(2)
$$K_2 = K_1^4$$

(3)
$$K_2 = \left(\frac{1}{K_1}\right)^{1/4}$$
 (4) $K_2 = \frac{1}{K_1}$

(4)
$$K_2 = \frac{1}{K_1}$$

27. Equilibrium constant for the reaction,

$$2 \text{ NO} + O_2 \Longrightarrow 2 \text{ NO}_2 \text{ is } K_{C_1}$$

$$NO_2 + SO_2 \longrightarrow SO_3 + NO$$
 is K_{C_2} and

 $2 \text{ SO}_3 \rightleftharpoons 2 \text{ SO}_2 + \text{O}_2 \text{ is } \text{K}_{\text{C}_3} \text{ then correct}$ reaction is:

- (1) $K_{C_3} = K_{C_1} \times K_{C_2}$
- (2) $K_{C_3} \times K_{C_1} \times K^2_{C_2} = 1$
- (3) $K_{C_3} \times K_{C_1} \times K_{C_2} = 1$
- (4) $K_{C_3} \times K^2_{C_1} \times K_{C_2} = 1$
- 28. 56 g of nitrogen and 8 g of hydrogen gas are heated in a closed vessel. At equilibrium, 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively.
 - (1) 1,2,2
- (2) 2,2,1
- (3) 1,1,2
- (4) 2,1,2
- 29. For the reaction (1) and (2):

$$A \rightleftharpoons B + C$$

Given,
$$K_{P_1}: K_{P_2}::9:1$$

If the degree dissociation of A and D be same then the total pressure at equilibria (1) and (2) are in the ratio (Assume reaction are started with equal number of moles of A and D).

(1) 3:1

(2) 36:1

(3) 1:1

(4) 0.5:1

30. The degree of dissociation of SO_3 is α at equilibrium pressure P_0 .

 K_p for $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ is

- (1) $[(P_0\alpha^3)/2(1-\alpha)^3]$
- (2) $[(P_0\alpha^3)/(2+\alpha)(1-\alpha)^2]$
- (3) $[(P_0\alpha^2)/2(1-\alpha)^2]$
- (4) $(P_0\alpha^3)/(2+\alpha)^2$
- 2 moles of PCl₅ when heated in a closed vessel of 2 litre capacity. At equilibrium, 40% of PCl₅ dissociated in PCl₃ and Cl₂.

The value of the equilibrium constant is:

(1) 2.67

(2) 5.3

- (3) 5.33
- (4) 0.267
- 32. 1 mole of N_2 and 2 moles of H_2 are allowed to react in a 1 dm³ vessel. At equilibrium, 0.8 mole of NH_3 is formed. The amount of H_2 in the vessel at equilibrium is:
 - (1) 0.6 mole
- (2) 0.8 mole
- (3) 0.2 mole
- (4) 0.4 mole
- 33. In the given reaction $2 X(g) + Y(g) \rightleftharpoons 2Z(g) + 80$ kcal, which combination of pressure and temperature will give the highest yield of Z at equilibrium?
 - (1) 1000 atm and 100°C
 - (2) 500 atm and 500°C
 - (3) 1000 atm and 200°C
 - (4) 500 atm and 100°C
- **34.** Which reaction will proceed in forward direction on increasing pressure?
 - (1) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$
 - (2) $SO_2(g) + 0.5 O_2(g) \rightleftharpoons SO_3(g)$
 - (3) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - $(4) \ H_2(g) + I_2(g) \Longrightarrow 2HI(g)$
- **35.** In a given system, water and ice are in equilibrium. If pressure is applied to the above system then:
 - (1) More of ice is formed
 - (2) Amount of ice and water will remain same
 - (3) More of ice is melted
 - (4) Either (1) or (3)

- 36. The equilibrium, SO₂Cl₂(g) ⇒ SO₂(g) + Cl₂(g) is attained at 25°C in a closed rigid container and an inert gas, helium, is introduced. Which of the following statement(s) is/are correct.
 - (1) Concentrations of SO₂, Cl₂ and SO₂Cl₂ are changed
 - (2) No effect on equilibrium
 - (3) Concentration of SO₂ is reduced
 - (4) K_p of reaction is increasing
- **37.** The following reaction is favourable at:

$$H_2O(s) \rightleftharpoons H_2O(\ell)$$

$$\Delta H = +ve : T = 0$$
°C

- (1) Low pressure & low temperature
- (2) High pressure & high temperature
- (3) Low pressure & high temperature
- (4) High pressure & low temperature
- **38.** In which of the following reactions, increase in the volume at constant temperature doesn't effect the number of moles at equilibrium:
 - (1) $2NH_3 \rightleftharpoons N_2 + 3H_2$
 - (2) $C(g) + (1/2) O_2(g) \rightleftharpoons CO(g)$
 - (3) $H_2(g) + O_2(g) \rightleftharpoons H_2O_2(g)$
 - (4) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
- **39.** For the reaction CO (g) + (1/2) O₂ (g) \rightleftharpoons CO₂
 - (g), K_c/K_p is:
 - (1) RT
 - (2) $(RT)^{-1}$
 - (3) $(RT)^{-1/2}$
 - (4) $(RT)^{1/2}$
- **40.** For the reaction equilibrium, $N_2O_4(g) \rightleftharpoons 2NO_2$
 - (g) the concentrations of N_2O_4 and NO_2 at equilibrium are 4.8×10^{-2} and 1.2×10^{-2} mol L^{-1} respectively. The value of K_c for the reaction is
 - (1) $3.3 \times 10^2 \text{ mol } L^{-1}$
 - (2) $3 \times 10^{-1} \text{ mol L}^{-1}$
 - (3) $3 \times 10^{-3} \text{ mol } L^{-1}$
 - (4) $3 \times 10^3 \text{ mol } L^{-1}$

41. For the reaction, $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$, $(K_C = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C})$

(R = 0.0831 kJ/(mol.K))

When K_p and K_c are compared at 184°C it is found that :

- (1) Whether K_p is greater than, less than or equal to K_c depends upon the total gas pressure
- (2) $K_p = K_c$
- (3) K_p is less than K_c
- (4) K_p is greater than K_c
- 42. An amount of solid NH₄HS is placed in a flask already containing ammonia gas at a certain temperature at 0.50 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH₃ and H₂S gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm? The equilibrium constant for NH₄HS decomposition at this temperature is:
 - (1) 0.11
- (2) 0.17
- (3) 0.18
- (4) 0.30
- 43. The equilibrium constant for the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ at 1000 K is 3.5 atm⁻¹. What would be the partial pressure of oxygen gas, if the equilibrium is found to have equal moles of SO_2 and SO_3 ?
 - (1) 0.285 atm
- (2) 3.5 atm
- (3) 0.35 atm
- (4) 1.84 atm
- **44. Assertion:** For the reaction, $N_2 + O_2 \rightleftharpoons 2NO$, increase in pressure at equilibrium has no effect on the reaction.

Reason: \sum moles of gaseous product $-\sum$ moles of gaseous reactant =0.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect

45. The standard Gibbs energy change at 300 K for the reaction $2A \rightleftharpoons B + C$ is 2494.2 J. At a given time, the composition of the reaction mixture is $[A] = \frac{1}{2}$, [B] = 2 and $[C] = \frac{1}{2}$. The

reaction proceeds in the:

[R = 8.314 J/K/mol, e = 2.718]

- (1) Forward direction because $Q > K_C$
- (2) Reverse direction because $Q > K_C$
- (3) Forward direction because $Q < K_C$
- (4) Reverse direction because $Q \le K_C$
- 46. The equilibrium constant at 298 K for a reaction $A + B \rightleftharpoons C + D$ is 100. If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D (in mol L^{-1}) will be:
 - (1) 0.818
- (2) 1.818
- (3) 1.182
- (4) 0.182
- 47. The increase of pressure on ice

 ⇒ water system at constant temperature will lead to:
 - (1) A decrease in the entropy of the system
 - (2) An increase in the Gibbs energy of the system
 - (3) No effect on the equilibrium
 - (4) A shift of the equilibrium in the forward direction
- **48.** The following reaction occurs in the Blast Furnace where iron ore is reduced to iron metal:

$$Fe_2O_3(s) + 3CO(g) \mathop{\Longrightarrow} 2Fe(\ell) + 3CO_2(g)$$

Using the Le Chatelier's principle, predict which one of the following will **not** disturb the equilibrium?

- (1) Addition of Fe₂O₃
- (2) Removal of CO₂
- (3) Removal of CO
- (4) Addition of CO₂

- **49.** For the reversible reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3$ at 500°C, the value of K_P is 1.44×10^{-5} when partial pressure is measured in atmospheres. The corresponding value of K_C , with concentration in mole litre⁻¹, is
 - $(1) \quad \frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
 - (2) $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
 - $(3) \quad \frac{1.44 \times 10^{-5}}{\left(0.082 \times 773\right)^2}$
 - (4) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$
- **50.** 2 mole of N_2 and 4 moles of H_2 are allowed to react in a 1 dm³ vessel. At equilibrium, 1.6 mole of NH_3 is formed. The amount of H_2 in the vessel at equilibrium is:
 - (1) 1.2 mole
- (2) 1.6 mole
- (3) 0.4 mole
- (4) 0.8 mole
- **51. Assertion:** The reaction quotient, Q has the same form as the equilibrium constant K_{eq} , and is evaluated using any given concentrations of the species involved in the reaction, and not necessarily equilibrium concentrations.

Reason: If the numerical value of Q is not the same as the value of equilibrium constant, a reaction will occur in ether direction.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect

- 52. In a 20 litre vessel initially we have 1 mole CO, $H_2O \& CO_2$ is present. Then for the equilibrium of $CO + H_2O \rightleftharpoons CO_2 + H_2$ following is true:
 - (1) H₂, more than 1 mole
 - (2) CO, H₂O, H₂ less than 1 mole
 - (3) CO₂ & H₂O both more than 1 mole
 - (4) All of these
- - (1) 0.28
- (2) 0.72
- (3) 0.18
- (4) None of these
- 54. Two solid compounds X and Y dissociates at a certain temperature as follows $X(s) \rightleftharpoons A(g) +$

2B(g) ;
$$K_{pl}$$
= 9 × 10⁻³ atm³ Y(s) \rightleftharpoons 2B(g) +

C(g); $K_{p2}=4.5 \times 10^{-3} \text{ atm}^3$

The total pressure of gases over a mixture of X and Y is:

- (1) 4.5 atm
- (2) 0.45 atm
- (3) 0.6 atm
- (4) None of these
- **55. Assertion:** A catalyst does not influence the values of equilibrium constant.

Reason: Catalysts influence the rate of both forward and backward reactions equally.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
 56. Find out lnK_{eq} for the formation of NO₂ from NO and O₂ at 298 K:

$$NO_{(g)} + \frac{1}{2}O_2 \rightleftharpoons NO_2 \ g$$

Given, ΔG_f° (NO₂) = 52.0 KJ/mole

$$\Delta G_f^{\circ}$$
 (NO) = 87.0 KJ/mole

$$\Delta G_f^{\circ}$$
 (O₂) = 0 KJ/mole

$$(1) \quad \frac{35 \times 10^3}{8.314 \times 298}$$

$$(2) -\frac{35 \times 10^3}{8.314 \times 298}$$

$$(3) \quad \frac{35 \times 10^3}{2.303 \times 8.314 \times 298}$$

(4)
$$\frac{35 \times 10^3}{2 \times 298}$$

- 57. The value of K_p for the reaction, 2H₂O(g) + 2Cl₂(g)

 ⇒ 4HCl(g) + O₂(g) is 0.03 atm at 427°
 C, when the partial pressure is expressed in atmosphere then the value of K_C for the same reaction is
 - (1) 5.23×10^{-4}
- (2) 7.34×10^{-4}
- (3) 3.2×10^{-3}
- (4) 5.43×10^{-5}
- 58. N_2 and H_2 are taken in 1:3 molar ratio in a closed vessel to attain the following equilibrium $(N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g))$. Find K_p for reaction at total pressure of 2P if P_{N_2} at

equilibrium is $\frac{P}{3}$.

- (1) $\frac{1}{3 P^2}$
- (2) $\frac{4}{3 P^2}$
- (3) $\frac{4 P^2}{3}$
- (4) None
- **59.** An equilibrium, a mixture in a vessel of capacity 100 litre contains 1 mol N₂, 2 mol O₂

and 3 mol NO. Number of moles of O_2 to be added so that at new equilibrium the concentration of NO is found to be 0.04 mol/lit.:

- (1) (101/18)
- (2) (101/9)
- (3) (202/9)
- (4) None of these
- 60. Densities of diamond and graphite are 3.5 and 2.3 g/ml respectively. Increase of pressure on the equilibrium C (diamond) \rightleftharpoons C (graphite)
 - (1) Favours backward reaction
 - (2) Favours forward reaction
 - (3) Has no effect
 - (4) Increase the reaction rate

Integer Type Questions (61 to 75)

- 61. The equilibrium constant (K_p) for the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ is 16. If the volume of the container is reduced to one half its original volume, the value of K_p for the reaction at the same temperature will be:
- 62. The value of ΔG° for the phosphorylation of glucose in glycolysis is 15 kJ/mole. The value of K_c at 300 K is e^{-x} then the value of x is (nearest integer)
- 63. 4.5 moles each of hydrogen and iodine heated in a sealed ten litre vessel. At equilibrium 3 moles of HI were formed. The equilibrium constant for H₂(g) + I₂(g) ⇒ 2HI(g) is:
- **64.** In the reaction $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the equilibrium pressure is 12 atm. If 50% of CO_2 reacts then K_p will be:
- **65.** For the reaction

$$A_2(g) + 3B_2 \rightleftharpoons 2C_2(g)$$

- the partial pressure of A_2 , B_2 at equilibrium are 0.80 atm and 0.40 atm respectively. The pressure of the system is 2.80 atm. The equilibrium constant K_p will be?
- 66. For the reaction PCl₅ ⇒ PCl₃ + Cl₂, the degree of dissociation varies inversely as the square root of pressure of the system. Supposing at constant temperature. If the volume is increased 16 times the initial volume, the degree of dissociation for this reaction will become how many times?
- 67. The equilibrium constant for the reaction, N_2 $(g) + O_2(g) \rightleftharpoons 2NO(g)$ at temperature T is 4×10^{-4} . The value of K_c for the reaction, NO(g) $\rightleftharpoons \frac{1}{2} N_2(g) + \frac{1}{2} O_2(g)$ at the same temperature is:
- 68. The equilibrium constant for the reaction, $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g) \text{ is } K_C = 5 \times 10^{-2}.$ The value of K_C for the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ will be?
- **69.** The equilibrium constant (K_c) for the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ at temperature T is 4×10^{-4} . The value of K_c for the reaction $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ at the same temperature is:

- 70. A solid XY kept in an evacuated sealed container undergoes decomposition to form a mixture of gases X and Y at temperature T. The equilibrium pressure is 10 bar in this vessel. K_P for this reaction is:
- 71. The value of $\log_{10}K$ for a reaction $A \rightleftharpoons B$ is: (Given: $\Delta_r H_{298K}^{\circ} = -54.07 \text{ kJ mol}^{-1}$, $\Delta_r S_{298K}^{\circ} = 10 \text{ JK}^{-1} \text{ mol}^{-1}$ and $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$; $2.303 \times 8.314 \times 298 = 5705$)
- 72. 4 moles of A are mixed with 4 moles of B, when 2 moles of C are formed at equilibrium, according to the reaction, A + B ⇒ C + D. The equilibrium constant is:
- 73. In a 0.25 litre tube dissociation of 4 moles of NO is take place. If its degree of dissociation is 10%. The value of K_p for reaction 2NO

 N₂ + O₂ is x⁻². The value of x is
- 74. A vessel at 1000 K contains CO_2 with a pressure of 0.5 atm. Some of the CO_2 is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is $\frac{X}{20}$, then value of x is
- 75. If the value of K_C for the reaction $2SO_{2(g)} + O_{2(g)}$ $\Longrightarrow 2SO_{3(g)}$ is y

 If the amount are $SO_3 = 48g$, $SO_2 = 12.8$ g and $O_2 = 9.6$ g at equilibrium and the volume of the container is one litre. Then the value of y is

CHAPTER

IONIC EQUILIBRIUM

Single Option Correct Type Questions (01 to 60)

1. 100 mL of 0.1 M NaOH solution is titrated with 100 mL of 0.05 M H_2SO_4 solution. The pH of the resulting solution is: (For H_2SO_4 , $K_{a_1} = \infty$,

$$K_{a_2} = 10^{-2}$$
)

(1) 7

(2) 7.2

(3) 7.4

- (4) 6.8
- 2. When salt NH₄Cl is hydrolysed at 25°C, the pH will be
 - (1) 7

(2) < 7

(3) > 7

- (4) 0
- 3. A weak acid (HA) is titrated with N/100 NaOH. What will be the pH of solution when 50% of titration is completed?

(Given $K_a = 10^{-4}$ & concentration of HA = 0.1 M)

(1) 4

(2) 8

(3) 6.9

- (4) 10
- 4. How many moles of NaOH must be removed from 1 litre of are aqueous solution to change its pH from 12 to 11?
 - (1) 0.009
- (2) 0.01
- (3) 0.02
- (4) 0.1
- 5. Four acids HA, HB, HC and HD form salts with NaOH of pH 7, 8, 9 and 10 respectively. If each solution was 0.1 M, then the strongest acid is:
 - (1) HA

(2) HB

- (3) HC
- (4) HD
- 6. pH of 3×10^{-3} M solution of H_3X will be (assume $\alpha_1 = 1$, $\alpha_2 = 1/3$, $\alpha_3 =$ negligible)
 - (1) 2.40
- (2) 3.0
- (3) 3.4771
- (4) 4.0

- 7. The amount of $(NH_4)_2SO_4$ to be added to 500 mL of 0.01 M NH_4OH solution $(pK_a \text{ for } NH_4^+ \text{ is } 9.26)$ so as to prepare a buffer of pH 8.26 is: $(Given : log_{10}5 = 0.7, 10^{-1.3} = 0.050)$
 - (1) 0.05 mol
- (2) 0.025 mol
- (3) 0.10 mol
- (4) 0.005 mol
- 8. What will be the pH and % α (degree of hydrolysis) respectively for a salt BA of 0.1 M concentration? (Given: K_a for HA = 10^{-6} and K_b for BOH = 10^{-6})
 - (1) 5, 1 %
- (2) 7, 10 %
- (3) 9, 0.01%
- (4) 7, 0.01%
- **9.** The solubility product constant (K_{sp}) of different sparingly soluble salts is given below: The correct increasing order of solubility is:

	Formula	Solubility Product
	Type	$(\mathbf{K}_{\mathrm{sp}})$
(i)	AB	4.0×10^{-20}
(ii)	A_2B	3.2 × 10 ⁻¹¹
(iii)	AB ₃	2.7×10^{-31}

- (1) (i) < (iii) < (ii)
- (2) (ii) < (i) < (iii)
- (3) (i) < (ii) < (iii)
- (4) (iii) < (i) < (ii)
- 10. What is ΔpH (initial pH final pH) when 100 ml 0.01 M HCl is added to a solution containing 0.1 m moles of NaHCO₃ solution of negligible volume

$$(K_{a_1} = 10^{-7}, K_{a_2} = 10^{-11} \text{ for } H_2CO_3)$$
?

- $(1) 6 + 2 \log 3$
- $(2) 3 2 \log 3$
- $(3) 3 + 2 \log 2$
- $(4) 6 2 \log 3$

11. Match the pK_a values given in list-II correctly for the conjugate acids given in list-I.

	List- I		List- II (pKa)
I	NH ₄ ⁺	P	5.82
II	$N_2H_5^{+}$	Q	9.26
III	NH ₃ OH ⁺	R	7.93

- (1) I-P; II-R; III-Q
- (2) I-Q; II-R; III-P
- (3) I-R; II-Q; III-P
- (4) I-Q; II-P; III-R
- **12.** In the equilibrium

 $CH_3COOH + HF \rightleftharpoons CH_3COOH_2^+ + F^-$

- (1) F- is the conjugate acid of CH₃COOH.
- (2) F- is the conjugate base of HF.
- (3) CH₃COOH is the conjugate acid of CH₃COOH₂⁺.
- (4) CH₃COOH₂⁺ is the conjugate base of CH₃COOH.
- **13.** Which one of the following is the strongest electrolyte?
 - (1) NaCl
- (2) CH₃COOH
- (3) NH₄OH
- $(4) C_6H_{12}O_6$
- **14.** Which of the following ions can act both as bronsted acid as well as bronsted base?
 - (1) Cl⁻

- (2) HCO $_3^-$
- (3) H_3O^+
- $(4) O^{2-}$
- **15.** pH of NaCl solution is 7 at 298 K. If the solution is heated to 320 K, then which one of the following statement is true?
 - (1) pH will decrease
 - (2) pOH will increase
 - (3) pH will increase
 - (4) pH will decrease and pOH will increase
- **16.** A 1.0 M monoprotic acid solution is 0.01% ionised. The dissociation constant of this acid will be:
 - (1) 1×10^{-8}
- $(2) 1 \times 10^{-4}$
- $(3) 1 \times 10^{-6}$
- (4) 1×10^{-5}

- 17. The degree of dissociation of a weak electrolyte increases
 - (1) On increasing dilution
 - (2) On increasing pressure
 - (3) On decreasing dilution
 - (4) None of these
- **18.** The pH a of HCl solution is 1. To 10 mL of this acid solution 40 mL of NaOH solution whose pH = 12 is added. The pH of resulting solution is: $(\log (1.2) = 0.07)$
 - (1) 2.93

- (2) 1.93
- (3) 3.93
- (4) 0.93
- 19. The pH value of 1.0×10^{-8} M HCl solution is less than 8 because
 - (1) HCl is completely ionised at this concentration.
 - (2) The ionization of water is negligible
 - (3) The ionization of water cannot be assumed negligible in comparison with this low concentration of HCl.
 - (4) The pH cannot be calculated at such a low concentration of HCl.
- **20.** What will be [HS $^-$] in a 0.1 M H₂S solution when 0.05 M H₂SO₄ is added to it ? ($K_{a_1} \& K_{a_2}$ are dissociation constants of H₂S)
 - (1) K_{a_1}

- (2) K_{a_2}
- $(3) \quad K_{a_1} \times K_{a_2}$
- $(4) \frac{K_{a_1}}{K_{a_2}}$
- **21.** Which one of the following salts undergo anionic hydrolysis?
 - (1) Na₃PO₄
- (2) NaCl
- (3) NH₄Cl
- (4) FeSO₄
- **22.** What is the pH of an aqueous solution of ammonium acetate?

$$(K_a = K_b = 1.8 \times 10^{-5})$$

- (1) > 7.0
- (2) 7.0
- (3) < 7.0
- (4) Zero

23. Percentage degree of hydrolysis of 0.1 M CH₃COONH₄, when

 $K_a = K_b = 1.8 \times 10^{-5}$ is:

- (1) 0.55
- (2) 7.63
- (3) 0.55×10^{-2}
- (4) 7.63×10^{-3}
- **24.** The pH of 0.1 M solution of the following salts increases in the order:
 - (1) NaCl < NH₄Cl < NaCN < HCl
 - (2) HCl < NH₄Cl < NaCl < NaCN
 - (3) $NaCN < NH_4Cl < NaCl < HCl$
 - (4) HCl < NaCl < NaCN < NH₄Cl
- **25.** Addition of sodium acetate solution to acetic acid causes which one of the following changes?
 - (1) pH increases
 - (2) pH decreases
 - (3) pH remains unchanged
 - (4) pH becomes 7
- 26. A buffer solution with pH 9 is to be prepared by mixing NH₄Cl and NH₄OH. The number of moles of NH₄Cl that should be added to one litre of 1.0 M NH₄OH is $[K_b = 1.8 \times 10^{-5}, 10^{0.26} = 1.81]$
 - (1) 3.4

(2) 2.6

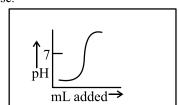
(3) 1.5

- (4) 1.8
- **27.** Which one of the following solutions can act as buffer?
 - (1) 0.1 molar aq. NaCl
 - (2) 0.1 molar aq. CH₃COOH + 0.1 molar NaOH
 - (3) 0.1 molar ag. ammonium acetate
 - (4) None of these
- 28. 100 mL of 0.02 M benzoic acid (pK_a = 4.2) is titrated using 0.02 M NaOH. pH of solution after addition of 50 mL and 100 mL of NaOH respectively will be
 - (1) 3.50, 7
- (2) 4.2, 7
- (3) 4.2, 8.1
- (4) 4.2, 8.25
- **29.** 10 mL of 1 M H₂SO₄ will completely neutralise:

- (1) 10 mL of 1 M NaOH solution
- (2) 10 mL of 2 M NaOH solution
- (3) 5 mL of 2 M KOH solution
- (4) 5 mL of 1 M Na₂CO₃ solution
- **30.** The suitable indicator for titration of weak base with strong acid is
 - (1) Methyl orange
- (2) Methyl red
- (3) Phenol red
- (4) Phenolphthalein
- **31.** Why are strong acids generally used as standard solutions in acid-base titrations?
 - (1) The pH at the equivalence point will always be 7.
 - (2) They can be used to titrate both strong and weak bases.
 - (3) Strong acids form more stable solutions than weak acids.
 - (4) The salts of strong acids do not hydrolysed.
- 32. What is the solubility of Cd(OH)₂ in a buffer solution having pH = 8 ? [K_{sp} (Cd(OH)₂) = 2.5 \times 10⁻¹⁴]
 - (1) 2.5 M
- (2) 0.25 M
- (3) 0.025 M
- (4) 0.0025 M
- **33.** A solution of 0.02 M MgCl₂ is mixed with equal volume of a solution which is 0.01 M in Na₂C₂O₄. If K_{sp} of MgC₂O₄ is 7×10^{-7} , then which one of the following is true?
 - (1) $[Mg^{2+}] = 0.01 M$ in final solution
 - (2) $[Mg^{2+}] = 0$ in final solution
 - (3) $[Mg^{2+}] = 0.005 \text{ M}$ in final solution
 - (4) $[C_2O_4^{2-}] = 0.005 \text{ M}$ in final solution
- **34.** One litre of water contains 10⁻⁷ mole H⁺ ions. Degree of ionisation of water is:
 - (1) $1.8 \times 10^{-7} \%$
- (2) $1.8 \times 10^{-9} \%$
- (3) $3.6 \times 10^{-7} \%$
- (4) $3.6 \times 10^{-9} \%$
- 35. 4.0 g of NaOH and 4.9 g of $\rm H_2SO_4$ are dissolved in water and volume is made upto 250 mL. The pH of this solution is:
 - (1) 7.0

(2) 1.0

(3) 2.0


(4) 12.0

- 36. How many millimoles of NaOH should be added to 1L of 0.1M FeCl₃ solution to just start the precipitation of Fe(OH)₃? $[K_{sp}[Fe(OH)_3] = 8 \times 10^{-13}]$.
 - (1) 2

(2) 4

(3) 0.2

- (4) 0.4
- 37. A solution contain equal moles of CH₃COOH and CH₃COONa. The pH will change significantly if
 - (1) Small amount of CH₃ COONa is added without changing volume.
 - (2) Small amount of CH₃COOH is added without changing volume.
 - (3) The solution is diluted
 - (4) Moles of HCl equal to moles of CH₃COONa are added.
- **38.** The following titration curve represents the titration of a _____ acid with a _____ base.

- (1) strong, strong
- (2) weak, strong
- (3) strong, weak
- (4) weak, weak
- **39.** 1 M NaCl and 1 M HCl are present in an aqueous solution. The solution is:
 - (1) Not a buffer solution with pH < 7
 - (2) Not a buffer solution with pH > 7
 - (3) A buffer solution with pH < 7
 - (4) A buffer solution with pH > 7
- **40.** Which one of the following statements is not true?
 - (1) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
 - (2) pH + pOH = 14 for all aqueous solutions at 25°C.
 - (3) The pH of 1×10^{-8} M HCl is 8
 - (4) The pH of 10^{-2} M H₂SO₄ is 1.7

- **41.** When rain is accompanied by a thunderstorm, the collected rain water will have a pH value
 - (1) slightly lower than that when the thunderstorm is not there of rain water without thunderstorm
 - (2) slightly higher than that when the thunderstorm is not there
 - (3) uninfluenced by occurrence of thunderstorm.
 - (4) which depends on the amount of dust in the air.
- **42.** The molar solubility (in mol L^{-1}) of a sparingly soluble salt MX_4 is s. The corresponding solubility product constant is $K_{sp.}$ s is given in terms of K_{sp} by the relation:
 - (1) $s = (K_{sp}/128)^{1/4}$
 - (2) $s = (128K_{sn})^{1/4}$
 - (3) $s = (256K_{sn})^{1/5}$
 - (4) $s = (K_{sp}/256)^{1/5}$
- 43. The solubility product constant of a salt having general formula MX_2 , in water is 4×10^{-12} . The concentration of M^{2+} ions in the saturated aqueous solution of the salt is:
 - (1) $2.0 \times 10^{-6} \text{ M}$
- (2) $1.0 \times 10^{-4} \text{ M}$
- (3) $1.6 \times 10^{-4} \,\mathrm{M}$
- $(4)\ \, 4.0\times 10^{-10}\ M$
- **44.** What is the conjugate base of OH⁻?
 - (1) O₂

(2) H_2O

(3) O⁻

- $(4) O^{2-}$
- **45.** The pK_a of a weak acid (HA) is 4.5. The pOH of an aqueous buffered solution of HA, in which 50% of the acid is ionized, is:
 - (1) 9.5

(2) 7.0

(3) 4.5

- (4) 2.5
- **46.** The pK_a of a weak acid, HA, is 4.80. The pK_b of a weak base, BOH, is 4.78. The pH of an aqueous solution of the corresponding salt, BA, will be
 - (1) 4.79

(2) 7.01

(3) 9.22

(4) 9.58

- 47. Solid Ba(NO₃)₂ is gradually dissolved in $1.0 \times 10^{-4} \, \text{M Na}_2 \text{CO}_3$ solution. At what concentration of Ba²⁺ will a precipitate begin to form? (K_{sp} for BaCO₃=5.1×10⁻⁹)
 - (1) $5.1 \times 10^{-5} \,\mathrm{M}$
- (2) $8.1 \times 10^{-8} \,\mathrm{M}$
 - (3) $8.1 \times 10^{-7} \,\mathrm{M}$
- (4) $4.1 \times 10^{-5} \text{ M}$
- **48.** Three reactions involving H₂PO₄⁻ are given below:
 - (i) $H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$
 - (ii) $H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+$
 - (iii) $H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2-}$

In which of the above reactions, does H₂PO₄⁻ act as an acid?

- (1) (ii) only
- (2) (i) and (ii)
- (3) (iii) only
- (4) (i) only
- **49.** In an aqueous solution the ionization constants for carbonic acid are

 $K_1 = 4.2 \times 10^{-7}$ and $K_2 = 4.8 \times 10^{-11}$ respectively. Select the correct statement from the following for a saturated 0.034 M solution of the carbonic acid.

- (1) The concentration of CO_3^{2-} is 0.034 M.
- (2) The concentration of CO_3^{2-} is greater than that of HCO_3^- .
- (3) The concentration of H⁺ and HCO₃⁻ are approximately equal.
- (4) The concentration of H^+ is double that of CO_3^{2-} .
- **50.** Solubility product constant of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as 120 g mol⁻¹) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is:
 - (1) 1.2×10^{-10} g
- (2) $1.2 \times 10^{-9} \text{ g}$
- (3) $6.2 \times 10^{-5} \text{ g}$
- (4) 5.0×10^{-8} g
- **51.** pK_a of a weak acid (HA) and pK_b of a weak base (BOH) are 3.2 and 3.4 respectively. The pH of their salt (AB) solution is:
 - (1) 6.9

(2) 7.0

(3) 1.0

(4) 7.2

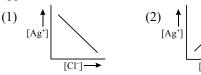
- **52.** 50 mL of 0.2 M ammonia solution is treated with 25 mL of 0.2 M HCl . If pK_b of ammonia solution is 4.75, the pH of the mixture will be:
 - (1) 4.75

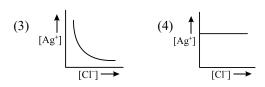
(2) 3.75

(3) 9.25

- (4) 8.25
- **53. Statement-1:** In the titration of weak a monoacidic base with a strong acid, the pOH at the half equivalent point is pK_b.

Statement-2: At half equivalence point, it will form buffer at its maximum capacity where [base] = [conjugate acid].


- (1) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (2) Statement-1 is true, statement-2 is true and statement-2 is not correct explanation for statement-1.
- (3) Statement-1 is true, statement-2 is false.
- (4) Statement-1 is false, statement-2 is true.
- **54.** 10 mL of $\frac{M}{5}$ CH₃COONa solution is titrated


with $\frac{M}{5}$ HCl solution. The pH value at equivalence point is: $(pK_a(CH_3COOH) = 4.76)$

(1) 0.7

- (2) 1
- (3) 1.88

- (4) 2.88
- **55.** In a saturated solution of AgCl, NaCl is added gradually. The concentration of Ag⁺ is plotted against the concentration of Cl⁻. The graph appears as:

56. Statement-1: Solubility of AgCN in KCN (aq) is greater than in pure water.

Statement-2: When AgCN dissolve in KCN(aq), complex ion [Ag(CN)₂] formation takes place and solubility equilibrium of AgCN shifted in backward direction.

- (1) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (2) Statement-1 is true, statement-2 is true and statement-2 is not correct explanation for statement-1.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is false, Statement-2 is true.
- 57. Ionization constant of CH₃COOH is 1.7×10^{-5} and concentration of H⁺ ions in the solutionis 3.4×10^{-4} M. The initial concentration of CH₃COOH is
 - (1) $3.4 \times 10^{-4} \,\mathrm{M}$
- (2) $3.4 \times 10^{-3} \,\mathrm{M}$
- (3) $6.8 \times 10^{-4} \,\mathrm{M}$
- (4) $6.8 \times 10^{-3} \,\mathrm{M}$
- **58. Assertion:** pH of x M HCl is less than pH of x M CH₃COOH.

Reason: The degree of ionization of HCl and CH₃COOH are equal at infinite dilution.

- (1) Both assertion and reason are correct, and reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but reason is not the correct explanation for the assertion
- (3) Assertion is incorrect, but reason is correct.
- (4) Both assertion and reason are incorrect.
- **59.** Match List I with List II and select the correct answer using the codes given below the lists:

List- I		List- II	
I	$\begin{array}{l} pH \ of \ 0.1M \ HA \\ (pK_a = 5) \ and \ 0.01 \ M \\ NaA \end{array}$	P	4

II	pH of 0.1 M BOH (pK _b = 6) and 0.1 M BCl	Q	7
III	pH of 0.1 M salt of HA $(pK_a=5)$ and BOH $(pK_b=7)$	R	6
IV	pH of 500 litre of 0.2 M HNO ₃ and 500 litre 0.2M NaOH	S	8

- (1) I-P; II-S; III-R; IV-Q
- (2) I-S; II-P; III-R; IV-Q
- (3) I-P; II-R; III-S; IV-Q
- (4) I-P; II-S; III-Q; IV-R
- 60. Match List I (solutions of salts of ...) with List II (pH of the solution is given by) and select the correct answer using the codes given below the lists:

	List- I		List- II		
Ι	Weak acid and strong base	P	$\frac{1}{2}pK_{w}$		
II	Strong acid and weak base	Q	$\frac{1}{2}(pK_w - pK_b + pK_a)$		
III	Weak acid and weak base	R	$\frac{1}{2}(pK_w - pK_b - \log C)$		
IV	Strong acid and strong base	S	$\frac{1}{2}(pK_w + pK_a + \log C)$		

- (1) I-P; II-Q; III-R; IV-S
- (2) I-S; II-R; III-Q; IV-P
- (3) I-S; II-R; III-P; IV-Q
- (4) I-R; II-S; III-Q; IV-P

Integer Type Questions (61 to 75)

61. How much water must be added to 300 mL of a 0.2 M solution of CH₃COOH for the degree

- of dissociation of the acid to double? (Assume K_a of acetic acid is of order of 10^{-5} M)
- 62. To a 10 mL of 10⁻³ N HNO₃ solution water has been added to make the total volume to one litre. What would be its pOH value?
- 63. What will be the pH when 0.01 mole of HNO₃ is dissolved in 'V' volume of water and $V \rightarrow \infty$?
- 64. The hydrogen ion concentration in 0.1 M solution of CH₃COOH, which is 30% dissociated, is 'x' M. The value ? '100x' is
- **65.** The solubility product constant of Ag_2CrO_4 is 32×10^{-12} . If $x\times10^{-5}$ M is the concentration of CrO_4^{2-} ions in that solution, then find the value of 'x'.
- 66. The first and second dissociation constants of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid is represented as $x \times 10^{-16}$. Find the value of 'x'.
- 67. At 25°C, the solubility product constant of $Mg(OH)_2$ is 1.0×10^{-11} . At what pH, will Mg^{2+} ions start precipitating in the form of $Mg(OH)_2$ from a solution of 0.001 M Mg^{2+} ions?
- **68.** The pH of a 0.1 molar solution of an acid HQ is 3. The value of the pK_a of the acid is
- 69. How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH = 1 to create an aqueous solution with pH = 2?
- **70.** What quantity (in mL) of a 45% acid solution of a monoprotic strong acid must be mixed with

- a 20% solution of the same acid to produce 800 mL of a 29.875% acid solution?
- 71. The dissociation constant of two acids HA_1 and HA_2 are 3.14×10^{-4} and 1.96×10^{-5} respectively. The relative strength of the acids is in the ratio x : 1 The value of x is_____.
- 72. If 0.5 moles of $(NH_4)_2SO_4$ is added to 1L of 0.5 M NH_4OH solution. What will be the pH (nearest integer) of the resultant solution? $[pK_a(NH_4^+) = 9.26]$.
- **73.** How many of the following statement(s) are true?
 - **S₁:** pH of water at 30°C is less than pH at 0°C. **S₂:** CN⁻ is a weaker base than OH⁻ as HCN is a stronger acid than H₂O.
 - **S3:** In the presence of strong base, the degree of dissociation of a weak base increases than in water.
- 74. Addition of sodium hydroxide solution to a weak acid (HA) results in a buffer of pH = 6. If ionisation constant of HA is 10^{-5} , then ratio of salt to acid concentration in the buffer solution will be
- 75. How many of the following statement(s) are true?
 - **S1:** The pH of solution made by dissolving 1 mole each of HCl, NaOH & CH_3COONH_4 in the same beaker is 7, if $pK_a(CH_3COOH) = pK_b(NH_3)$.
 - **S2:** Methyl orange can be used as an indicator in the titration of CH₃COOH with NaOH.
 - **S3:** Water act as an acid when ammonia is dissolved in water

CHAPTER

08

ORGANIC CHEMISTRY- SOME BASIC PRINCIPLES & TECHNIQUES

Single Option Correct Type Questions (01 to 60)

- 1. Which of the following IUPAC name is incorrect?
 - (1) 3-Ethylpenta-1, 4-diene
 - (2) 2-Ethylhex-1-en-4-yne
 - (3) 2-(2- Chloroethyl) pentanenitrile
 - (4) 2, 2-Dichlorohexan-4-ol
- 2. The given structures are NH_2 and

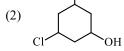
- (1) Chain isomers
- (2) Position isomers
- (3) Functional isomers
- (4) Metamers
- **3.** Which of the following compound is achiral (optically inactive)?
 - (1) 1-Bromo-2-chlorocyclopropane
 - (2) (Trans)-2-Methyl hex-3-ene
 - (3) 2-Methyl butanal
 - (4) 2, 3, 4-Trimethyl hexane
- **4.** Identify the compound and find the relation between them.

$$H$$
 $COOH$
 C_2H_5

$$\begin{array}{c} \text{COOH} \\ \text{H} \\ \text{CH}_3 \end{array}$$

- (1) Conformational isomers or identical
- (2) Configurational diastereomer
- (3) Configurational enantiomers
- (4) Constitutional isomers

5. Correct IUPAC name of the compound is


$$NH_2$$
 — CH — CH — CHO

HOOC COOH

- (1) 2-Formyl-3-aminobutane dioic acid
- (2) 2-Amino-3-formylbutane-1, 4-dioic acid
- (3) 3-Amino-2, 3-dicarboxypropanal
- (4) None of the above
- **6.** Which of the following statement is **incorrect?**
 - (1) A meso compound has chiral centres but does not exhibit optical activity.
 - (2) If a molecule is dissymmetric, it rotate the plane of plane polarized light.
 - (3) A meso compound is optically inactive because the rotation caused by any molecule is cancelled by an equal and opposite rotation caused by another molecule that is the mirror image of the first.
 - (4) The two diastereomers have same structure formula but different physical and chemical properties.
- 7. Which is correctly matched with IUPAC Name?

(1)
$$\bigcap_{NO_2}^{CHO}$$

2-Nitrocyclohex-5-ene-1-carbaldehyde COOH

5-Chloro-3-hydroxycyclohexane-1-carboxylic acid

2-Ethenyl-6-chlorocyclohexanol

2-(2-bromocyclohexyl) propanenitrile

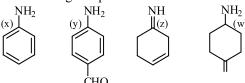
8. In which compound D-exchange is possible in presence of OD^-/D_2O ?

9. Which of the following compound has non superimposable mirror image -

(1)
$$\begin{array}{c} \text{COOH} & \text{COOH} \\ \text{HO H} & \text{H} & \text{OH} \end{array}$$

$$(3) \begin{array}{ccc} NH_2 & NH_2 \\ H & & \\ Ph & Ph \end{array}$$

(4)
$$CH_3$$
 $C=C=C=C$ H

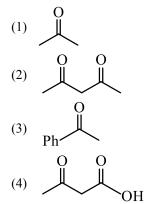

10. The enol form of acetone, after treatment with D_2O , gives -

OD O
$$| CH_3 - C = CH_2$$
 (2) $CD_3 - C = CD_3$ OH OD $| CH_3 - C = CHD$ (4) $CH_3 - C = CD_2$ ONH2

11. C

has correct IUPAC name as:

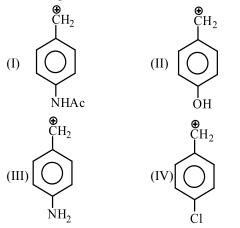
- (1) 3-Carbamoylbenzene-1-carbonitrile
- (2) 3-Cyanobenzene-1-carboxamide
- (3) 3-Cyanobenzamide
- (4) 3-Aminocarbonylcyanobenzene
- **12.** Glycerol is purified by :
 - (1) Steam distillation
 - (2) Distillation under reduced pressure
 - (3) Fractional distillation
 - (4) Simple distillation
- **13.** The correct order of C—N bond lengths for the following compounds is


- (1) w > x > y > z
- (2) v > x > w > z
- (3) w > y > z > x
- (4) x > y > z > w
- 14. In HCOO⁻, the two carbon-oxygen bonds are found to be of equal length. What is the reason for this?
 - (1) The anion is obtained by the removal of a proton from the acid molecule.
 - (2) Electronic orbitals of carbon atoms are hybridised.
 - (3) The C=O bond is weaker than C–O bond.
 - (4) The anion HCOO⁻ has two equally stable resonating structures.

- **15.** Which of the following orders of acidic strength is correct?
 - (1) RCOOH > CH≡CH > HOH > ROH
 - (2) RCOOH > ROH > HOH > CH≡CH
 - (3) $RCOOH > HOH > ROH > CH \equiv C$
 - (4) RCOOH > HOH > CH≡CH > ROH
- **16.** The decreasing order of the stability of the ions

CH₃—CH —COCH₃

(III)


- $(1) \quad I > II > III$
- (2) III > II > I
- (3) II > III > I
- (4) II > I > III
- **17.** Maximum enol content is in:

18. Which of the following is least stable carbanion?

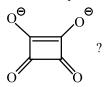
- (2) $(C_6H_5)_3C$
- (3) (CH₃)₃C
- (4) H_C≡C

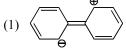
19. Arrange stability of the given carbocations in decreasing order

- (1) I > II > III > IV
- (2) III > II > IV
- $(3) \quad IV > I > II > III$
- $(4) \quad II > III > I > IV$
- **20.** The most basic among the following is:
 - (1) CH₃O⁻
- (2) $C_6H_5O^-$
- (3) (CH₃)₂ CHO⁻
- (4) (CH₃)₃ CO⁻
- **21.** Select false statement from the following?
 - (1) Formation of dichlorocarbene from CHCl₃ is an elimination reaction.
 - (2) Carbocations and free radicals are planar chemical species.
 - (3) In the rearrangement of carbocation, 1°-carbocation may convert into 2°-carbocation
 - (4) CCl₃ group is o, p-directing because it exhibit hyperconjugation with benzene ring.
- **22.** The correct leaving group ability order is :
 - $(1) \quad OH > H_2O$
 - (2) $\overset{\Theta}{OH} > \overset{\Theta}{SH}$

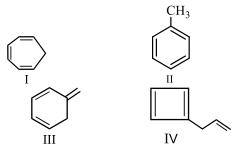
$$(3) \qquad \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

 $(4) \quad \text{Cl} > \text{I}$


- 23. In Dumas' method for estimation of nitrogen, 0.3 g of an organic compound gave 50 mL of nitrogen collected at 300 K temperature and 715 mm pressure. What will be the percentage composition of nitrogen in the compound. (Aqueous tension at 300 K = 15 mm)
 - (1) 22.38%
- (2) 17.46%
- (3) 55.11%
- (4) 82.74%
- **24.** Select the correct statement?
 - (1) All canonical forms always contribute equally to the resonance hybrid.
 - (2) In both ethanamine and ethenamine nitrogen is sp³ hybridised.
 - (3) All 'C–O' bond lengths in carbonate dianion are equal.
 - (4) CH₂=C=O does not exhibit resonance because it is not a conjugated system.
- **25.** Which of the following ion will be aromatic in nature?


- **26.** In the following sets of resonating structure, label the major contributors towards resonance hybrid.
 - $(P) \quad CH_3 \overset{\Theta}{CH} C \equiv N \xrightarrow{\longleftarrow} CH_3 CH = C = \overset{\bullet}{N} \overset{\Theta}{:}$
 - (Q) CH_3 —C— CH_3 \longleftrightarrow CH_3 —C=CH—C—CH
 - $(R) \xrightarrow{CH_3-CH_2-\overset{\bigoplus}{C}-NH_2} \overset{CH_3-CH_2-\overset{\bigoplus}{C}-NH_2}{\underset{(II)}{\longleftarrow}} \overset{\bigoplus}{NH_2}$
 - $(S) \xrightarrow{CH_3-CH-CH=CH-NO_2} \xrightarrow{CH_3-CH=CH-CH=N-O} \xrightarrow{(II)} \xrightarrow{II} \xrightarrow{O}$
 - (1) II, II, I, II
- (2) II, II, II, I
- (3) II, II, II, II
- (4) I, I, II, I

27. Which of the following statement is correct regarding dianion of squaric acid



- (1) In the dianion, all the C–C bonds are of same length but all C–O bonds are of different length.
- (2) In the dianion, all C–C bonds are of same length and also all C–O bonds are of same lengths.
- (3) In the dianion, all C–C bond lengths are not of same length.
- (4) None of the above.
- 28. Which of the following does not represent the

resonating structure of

- (2)
- (3) ⊖ ⊕
- (4)
- **29.** The correct order of resonance energy of the following compounds would be

- (1) I > II > III > IV
- (2) IV > III > II > I
- (3) II > I > III > IV
- $(4) \quad II > III > I > IV$

- 30. The Carbocations, carbanions, free radicals and radical cation are reactive carbon intermediates. Their hybrid orbitals respectively are
 - (1) sp^2, sp^2, sp^3, sp
 - (2) sp^2, sp^2, sp, sp^3
 - (3) sp^2 , sp^3 , sp^2 , sp
 - (4) sp^3 , sp^2 , sp, sp^2
- **31.** Which of the following is not a resonating structure for the phenoxide ion?

32. The correct bond order is

$$H_2C \stackrel{a}{=} C$$
 $CH \stackrel{c}{=} CH_2$
 $CH \stackrel{c}{=} CH_2$

- (1) a > b > c
- (2) b > a > c
- (3) c > a > b
- (4) c > b > a
- **33.** The compound which is not stabilised by resonance:
 - (1) CH₂=CH-Cl
- (2)
- (3) CH₂=CH-CH₂-Cl
- **34.** Which statement is correct regarding Inductive effect?
 - (1) Electron displacement along a carbon chain and develops partial charges on atoms.

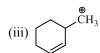
- (2) Complete transfer of one of the shared pair of electrons to one of the atom joined by a double bond.
- (3) Implies transfer of lone pair of electrons from more electronegative atom to the less electronegative atom.
- (4) I effect increases with increase in the distance
- **35.** The correct stability order of the following resonating structures is

$$H_2C = \stackrel{+}{N} = \stackrel{-}{N}$$
 $H_2C - N = \stackrel{-}{N}$ (II)

$$H_2\bar{C}-\stackrel{+}{N}\equiv N$$
 $H_2\bar{C}-N\stackrel{+}{=}N$ (III) (IV)

- (1) (I) > (II) > (IV) > (III)
- (2) (I) > (III) > (II) > (IV)
- (3) (II) > (I) > (III) > (IV)
- (4) (III) > (I) > (IV) > (II)
- **36.** Which of the following statement is correct?
 - (1) +I group stabilises the carbocation.
 - (2) +I group stabilises the carbon free radical
 - (3) -I group stabilises the carbanion
 - (4) All of these
- 37. In which of the following delocalisation of π -electron is possible.
 - (1) CH₂=CH-CH₂-CHO
 - (2) CH₂=CH-CH=O
 - (3) CH₃-CH-CH₃ | OH
 - (4) CH₂=CH-CH₂-CH=CH₂
- **38.** In which compound delocalisation is not possible:
 - (1) 2-Butene
 - (2) 1, 3-Butadiene
 - (3) 1, 3, 5-Hexatriene
 - (4) Benzene

- 39. The least and most stable resonating structure respectively are:
 - (a) CH₂=CH-ČH-ČH-C-CH₃
 - (b) CH₂=CH-CH-CH=C-CH₃
 - (c) CH₂-CH-CH=CH-C-CH₂
 - (d) CH₂=CH-CH=CH-C-CH₂ O
 - (1) a, d


(2) b, c

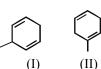
(3) d, a

- (4) c, b
- 40. In each of the following pairs, which ion is more stable:

(x) **(y)**

- (i) CH_2 -CH=CH- NH_2 & CH_2 =CH-CH = NH₂
- & CH₂=CH-CH=CH-CH=CH₂ (ii)

- (iv) CH₂=CH-CH=CH-CH=CH₂& CH₂=CH-C-CH=CH₂ ĈН
- (1) xyyy
- (2) yxyx
- (3) x x x x
- (4) y x y y
- 41. Arrange the following groups in order of decreasing +M effect.
 - (i) -Ŏ

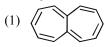

- (ii) $-NH_2$
- (iii) OH
- (iv) -NHCOCH₃
- (1) i > ii > iii > iv
- (2) iv > iii > ii > i
- (3) i > iii > ii > iv
- (4) i > iv > iii > ii

42. Electron density order in the benzene nucleus is

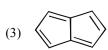
-ÑH₂

(III)CH₃

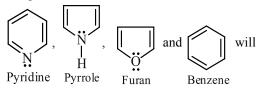
- NO_2
- (1) I > II > III > IV
- (2) I>III>II>IV
- (3) IV > II > III > I
- (4) I>IV>II>III
- 43. Which of the following group has the maximum hyperconjugation effect?
 - (1) CH₃-
- (2) CH₃CH₂-
- (3) (CH₃)₂CH-
- (4) $(CH_3)_3C-$
- The C-C bond length in propene is a little 44. shorter (1.49 Å) than the C-C bond length (1.54 Å) in ethane. This is due to
 - (1) +I effect of CH₃
 - (2) Mesomeric effect
 - (3) Resonance effect
 - (4) Hyperconjugation effect
- 45. The order of heat of hydrogenation in following compound is:



- $(1) \quad I < II < IV < III$
- (III) (IV) (2) III < IV < II < I
- $(3) \quad II < III < I < IV$
- $(4) \quad II < IV < I < III$
- Which of the following molecules have all C-46. C bonds are of equal length?



- (4) All of these
- 47. Identify the aromatic compound?



48. Number of π electrons in conjugation for these compounds

be respectively:

(1) 8, 6, 6, 6

(2) 6, 4, 6, 6

(3) 6, 6, 6, 6

(4) 6, 6, 8, 6

- **49.** Which of the following statement is not true about the resonance contributing structures to a resonance hybrid
 - (1) Contributing structures contribute to the resonance hybrid in proportion of their energies.
 - (2) Number of unpaired electrons remain same in the resonating structures.
 - (3) Contributing structures represent hypothetical molecules having no real existence.
 - (4) Contributing structures are less stable than the resonance hybrid.
- **50.** Which of the following series contains atoms/groups having only –M (mesomeric) effect?
 - (1) COR, OR, COOR
 - (2) Cl, CHO, NH₂
 - (3) NO₂, CN, SO₃H
 - (4) OH, NR₂, SR
- **51.** Select the correct order of heat of hydrogenation?

 $(1) \quad I > II > III > IV$

(2) IV > III > II > I

 $(3) \quad II > III > IV > I$

(4) II > III > I > IV

- **52.** Carbon-carbon double bond length will be maximum in which of the following compound?
 - (1) CH₃-CH=CH₂
 - (2) CH₃-CH=CH-CH₃
 - (3) CH₃-C=-C-CH₃ CH₃ CH₃
 - (4) CH₂=CH₂
- **53.** Which of the following is correct about the following compound

(Naphthalene)

- (1) All the C–C bond length are same
- (2) C_1 – C_2 bond length is shorter than C_2 – C_3 bond length
- (3) C_1 – C_2 bond length is greater than C_2 – C_3 bond length
- (4) All the C–C bond length are equal to C-C bond length of benzene
- **54.** What is true about the following reactions

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

- (1) I is nonaromatic
- (2) II is nonaromatic
- (3) III is antiaromatic
- (4) Out of I, II and III, only III compound is nonaromatic

55. Assertion: The resonating structure of acylium ion, $R-C=\overset{+}{O}$ is more stable than $R-\overset{+}{C}=\overset{-}{O}$:

Reason: The octet of all atoms is complete in $R-C \equiv \overset{+}{O}$

- (1) Both Assertion and Reason are true, and Reason is the correct explanation of Assertion
- (2) Both Assertion and Reason are true, but Reason is not correct explanation of Assertion.
- (3) Assertion is true but Reason is false.
- (4) Assertion is false but Reason is true.
- **56. Assertion:** Heterolytic fission involves the breaking of a covalent bond in such a way that both the electrons of the shared pair are carried away by one of the atoms.

Reason: Heterolytic fission occurs readily in polar covalent bonds.

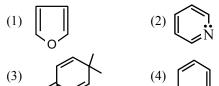
- Both Assertion and Reason are true, and Reason is the correct explanation of Assertion.
- (2) Both Assertion and Reason are true, but Reason is not correct explanation of Assertion.
- (3) Assertion is true but Reason is false.
- (4) Assertion is false but Reason is true.
- **57. Assertion:** Allyl free radical is more stable than simple alkyl free radical.

Reason: The allyl free radical is stabilized by resonance.

- Both Assertion and Reason are true, and Reason is the correct explanation of Assertion.
- (2) Both Assertion and Reason are true, but Reason is not correct explanation of Assertion.
- (3) Assertion is true but Reason is false.
- (4) Assertion is false but Reason is true.
- **58.** Match the contribution of following resonating structures towards their resonance hybrid in

Column I with their attributes (properties) mentioned in Column II

	Column I		Column II	
I	O CH ₃ CH ₂ –C–OCH ₂ CH ₃	P	Equal contributor	
П	CH ₃ −N O⊖	Q	major contributor	
III	O O ⊕ CH ₃ -C-CH-C-CH ₃	R	minor contributor	


- (1) I-Q; II-P; III-R
- (2) I-R; II-Q; III-P
- (3) I-P; II-R; III-O
- (4) I-Q; II-R; III-P
- **59.** In the following benzyl/allyl system

$$R - CH = CH_2$$
 and

(R is alkyl group)

Decreasing order of inductive effect is:

- (1) $(CH_3)_3 C \rightarrow (CH_3)_2 CH \rightarrow CH_3 CH_2 -$
- (2) $CH_3CH_2 \rightarrow (CH_3)_2CH \rightarrow (CH_3)_3C-$
- (3) $(CH_3)_2CH \rightarrow CH_3CH_2 \rightarrow (CH_3)_3C-$
- (4) $(CH_3)_3C \rightarrow CH_3CH_2 \rightarrow (CH_3)_2CH$
- **60.** Which of the following molecules is least resonance stabilized?

Integer Type Questions (61 to 75)

- 61. 0.28 g of a nitrogenous compound was subjected to Kjeldahl's process to produce 0.17 g of NH₃. The percentage of nitrogen in the organic compound is:
- **62.** Total no. of stereo isomer of

$$Cl$$
 Br

63. Total no. of stereo isomer of

64. The molecular formula of diphenyl methane, CH_2 , is $C_{13}H_{12}$.

How many structural isomers are possible when one of the hydrogen is replaced by chlorine atom

- **65.** How many positional isomers of tetrabromo benzene are possible?
- **66.** How many structural isomers of C₅H₁₁OH will be primary alcohols.
- 67. How many structures are there in which delocalisation of positive charge is possible

$$(I) \qquad \qquad (II) \qquad (IV) \qquad$$

68. The sum of total number of hyperconjugable hydrogen atoms of following species are

$$\overset{\oplus}{\text{CH-CH}_3}$$
, $\overset{\oplus}{\text{CH}_3}$ $\overset{\oplus}{\text{CH}_2}$ $\overset{\ominus}{\text{CH}_3}$ $\overset{\ominus}{\text{CH}_2}$ $\overset{\ominus}{\text{CH}_3}$ $\overset{\hookrightarrow}{\text{CH}_3}$ $\overset{\hookrightarrow}{\text{CH}_3}$ $\overset{\hookrightarrow}{\text{CH}_3}$ $\overset{\hookrightarrow}{\text{CH}_3}$ $\overset{\hookrightarrow}{\text{C$

69. How many following molecules/ions show correct direction of inductive effect.

II.
$$CH_3 \leftarrow CH_2$$
 III. $C1 \rightarrow CH = CH_2$

IV.
$$CH_3 \rightarrow CH = CH_2$$
 V. $CH_3 \rightarrow Li$

VI.
$$CH_3 \leftarrow MgBr$$
 VII. $CH_3 \rightarrow CH_2 \rightarrow OH$

VIII.
$$CH_3 \leftarrow \overset{\Theta}{O}$$
 IX. $CH_3 \rightarrow \overset{\Phi}{N}H_3$
X.

70. Number of delocalised π electrons in the following structure is.

71. How many equally stable resonating structures are possible for (tropylium cation)?

72. How many groups (attached with benzene ring) show + M effect?

73. Observe the following compound and write the number of hydrogen atoms involved in hyperconjugation?

74. In π how many π bonds are in resonance?

75. Total no. of stereo isomer of CH₂CH=CHCH₃
CH=CHCH₂CH₃

HYDROCARBONS

Single Option Correct Type Questions (01 to 60)

- **1.** Which of the following hydrocarbons give same product on hydrogenation.
 - (1) 2-Methyl hex-1-ene & 3-Methyl hex-3-ene
 - (2) 3-Ethyl hex-1-en-4-yne & 2-Methylhept-2-en-4-yne
 - (3) 3-Ethylcycloprop-1-ene & 1,2-Dimethylcycloprop-1-ene
 - (4) 2-Methylbut-2-ene & 3-Methylbut-1-ene
- **2.** Only two isomeric monochloro derivatives are possible for:-
 - (1) n-Pentane
 - (2) 2,4-Dimethyl pentane
 - (3) Toluene
 - (4) 2,3-Dimethyl butane
- **3.** Which of the following alkene gives four monochloro (structural isomers) products after hydrogenation?
 - (1) Pent-2-ene
 - (2) 2-Methylbut-2-ene
 - (3) 3-Methylhex-2-ene
 - (4) 2, 3-Dimethylbut-2-ene

4.
$$X \xrightarrow{O_3/Zn} + \bigcup_{O} + \bigcup_{$$

The IUPAC name of compound Y is:

- (1) 2-Cyclohexylbutane
- (2) 1-(1-Methylpropyl) cyclohexane

- (3) Butylcyclohexane
- (4) 1-Cyclohexylbutane
- 5. An alkene give two moles of HCHO, one mole of CO_2 and one mole of $CH_3 C CHO$ on

ozonolysis.

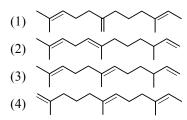
Its structure could be:

(1)
$$CH_2 = CH - CH - CH = CH_2$$

 CH_3

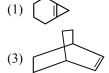
(2)
$$CH_2 = C = CH - C - CH_3$$

 CH_2


(3)
$$CH_3 - C = CH - CH = CH_2$$

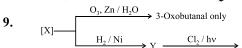
 CH_3

(4)
$$CH_2 = C = CH - CH - CH = CH_2$$
 CH_2

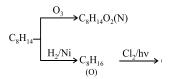

6. Which of the following compound on reductive ozonolysis does not give glyoxal as one of the product:

$$(1) \qquad \qquad (2) \qquad \qquad (3) \qquad \qquad (4) \qquad \qquad (4)$$

7. Farnesene is a compound found in the waxy coating of apples. On hydrogenation it gives 2,6, 10- Trimethyl dodecane. On ozonolysis it gives one mole acetone, one mole of formaldehyde, one mole of 2-Methylpentanedial and one mole of 4-Oxopentanal. The structure proposed for Farnesene may be



8. An alkene (A)
$$\xrightarrow{\text{Ozonolysis}}$$
 $\xrightarrow{\text{CHO}}$, A is



Four monochloro structural isomeric products

Compound 'X' is:

- (1) 1-Methylcyclopropene
- (2) 1, 4-Dimethylcyclohexa-1,4-diene
- (3) 1, 4-Dimethylcyclohexa-1,3-diene
- (4) 1, 2-Dimethylcyclohexa-1,4-diene
- **10.** The chemical reactions of an unsaturated compound 'M' are given below. Determine the possible structural formula of 'M'

(M)

C₈H₁₅Cl(P) (Only one monochloro product)

- 11. Ozonolysis of an organic compound 'A' produces acetone and propionaldehyde in equimolar mixture. Identify 'A' from the following compounds:
 - (1) 1-Pentene
 - (2) 2-Pentene
 - (3) 2-Methyl-2-pentene
 - (4) 2-Methyl-1-pentene
- 12. Which branched chain isomer of the hydrocarbon with molecular mass 72 u gives only one isomer of mono substituted alkyl halide?
 - (1) Tertiary butyl chloride
 - (2) Neopentane
 - (3) Isohexane
 - (4) Neohexane
- **13.** Which compound would give 5-keto-2-methyl hexanal upon ozonolysis?

14.
$$X \xrightarrow{H_2/Ni}$$

X may be

(4) All of these

- **15.** In which case Clemmensen reduction should be avoided.
 - (1) OH O

(3)

(4) All of these

Product P is

17.
$$\overbrace{\hspace{1cm}}^{NH_2-NH_2/KOH} \rightarrow P$$

Product P is

18.
$$CH_3COONa \xrightarrow{reagent} CH_4$$

reagent is

- (1) NH_2-NH_2/KOH
- (2) Zn-Hg/HCl
- (3) NaOH + CaO
- (4) All of these

19. A
$$\xrightarrow{\text{NaOH} + \text{CaO}}$$
 CH₃-CH₂-CH₃

A can be

- (1) CH₃CH₂COONa
- (2) CH₃CH₂CH₂COONa

(4) CH₃CH₂CH₂ONa

20. A
$$\xrightarrow{\text{Na/ Dry ether}}$$

A may be

- (1) Chloromethane
- (2) Chloroethane
- (3) 1-Chloropropane
- (4) 2-Chloropropane

21. $CH_4 + X_2 \xrightarrow{hv} CH_3 - X$

Order of reactivity of halogen is

- (1) $I_2 > Br_2 > Cl_2 > F_2$
- (2) $F_2 > Cl_2 > Br_2 > I_2$
- (3) $Br_2 > Cl_2 > I_2 > F_2$
- (4) $Cl_2 > Br_2 > F_2 > I_2$
- **22.** Reactivity order of Hydrogen for the given reaction is

$$H_x$$
 + Br₂ H_y + Br₂

- (1) X > Y > Z
- (2) Z > X > Y
- $(3) \quad Y > Z > X$
- (4) Z > Y > X

23. Anhy.
$$AlCl_3$$
 HCl

This reaction is known as

- (1) Isomerisation of alkane
- (2) Polymerisation of alkane
- (3) Wurtz reaction
- (4) None of these

24.
$$\xrightarrow{\text{Anhy. AlCl}_3} \mathbb{F}$$

P may be

- (3)
- (4) All of these
- 25. $CH_3-CH_2-C\equiv C-CH_2-CH_3 \xrightarrow{Na/NH_3(\ell)}$ Product:

(1)
$$C_{2}H_{5}$$
 $C_{2}H_{5}$
 H $C_{2}H_{5}$ H
(2) $C = C$ $C_{2}H_{5}$ $C_{2}H_{5}$ $C_{2}H_{5}$

- (3) Both A & B
- (4) None of these

Product

Product is:

(4) None of these

27.
$$CH_3$$
-CH-CH-CH-CH-CH₃
 CH_3 Br CH_3
 CH_3 Br CH_3
 CH_3 Product

Product is:

(4) None of these

29.

28. Ph–CH=CH₂ + HBr
$$\longrightarrow$$
 Product:

$$\begin{array}{ccc} \text{(1)} & \text{Ph--CH}_2\text{--CH}_2 \\ \text{I} & \text{Br} \end{array} \qquad \begin{array}{ccc} \text{(2)} & \text{Ph---CH} = \text{CH} \\ \text{I} & \text{Br} \end{array}$$

$$\begin{array}{c}
\text{Hg(OAc)}_{2}, \text{H}_{2}\text{O} \\
\text{NaBH}_{4}
\end{array}$$
 Product

$$(1)$$
 CH_3 (2) CH_3 OH

$$(3) \qquad CH_3 \qquad (4) \qquad CH_3$$

 $CH_3-CH_2-CH=CH_2$ \xrightarrow{A} $CH_3-CH_2-CH_2$ 30. OH

Reagent A will be?

- (1) Hg(OAc)₂, H₂O / NaBH₄
- (2) B_2H_6 , $H_2O_2 + OH^-$
- (3) Both (A) and (B)
- (4) None of these

31. Ph-CH=CH₂ + HBr
$$\xrightarrow{\text{peroxide}}$$
 Product

(3) Ph-CHBr-CH₃ (4) Ph-CH₂-CHBr

23. Ph-CH=CH₂ + HCl
$$\xrightarrow{\text{peroxide}}$$
 Product

(1) Ph-CH₂-CH₂

(2) Ph-CH=CH

Cl

33.
$$CH_3-CH_2-C-C-CH_2-CH_3 \xrightarrow{2NaNH_2}$$
Br Br

Product

Product is:

32.

- (1) CH₃-C≡C-CH₂-CH₂-CH₃
- (2) CH₃-CH₂-C≡C-CH₂-CH₃
- (3) $CH \equiv C CH_2 CH_2 CH_2 CH_3$
- (4) CH₃-CH=CH-CH₂-CH₂-CH₃
- $A \xrightarrow{2 \text{NaNH}_2} Ph-C \equiv C-Ph$ 34. A is:

(3) $CH_3-CH_2-CH_2-CH_3$ (4) None of these

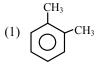
35. $2Ph-CCl_3 + Ag \longrightarrow Product$ Product is:

- (1) Ph-CH=CH-Ph+AgCl
- (2) $Ph-CH_2-CH_2-Ph+AgCl$
- (3) $Ph-C \equiv C-Ph + AgCl$
- (4) $Ph-C \equiv C-CH_3 + AgCl$
- $C_2H_5-C\equiv C-C_2H_5+Cl_2 \xrightarrow{CCl_4} Product$ 36. Final product is:
 - (1) C_2H_5 -CH-CH₂- C_2H_5
 - (2) C_2H_5 -CH- C_2H_5 Cl
 - (3) C₂H₅-CH-CH-C₂H₅ Cl Cl
 - (4) $C_2H_5-CCl_2-CCl_2-C_2H_5$
- $CH_3-C\equiv CH + HBr \longrightarrow Product$ 37.

Product is:

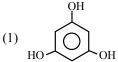
- (1) CH₃-CH-CH₃ Br Br
- (2) CH_3 –CH=CHBr
- (3) $CH_3-CBr_2-CH_3$ (4) CH_3-C-CH_3
- Br Br
- 38.

Product is:

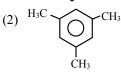

- (1) CH₃-C-CH₃ OH
- (2) CH₃CH₂-CHO
- (3) CH₃-C-CH₃
- OH
- $CH_3CH_2C\equiv CCH_2CH_3 + H_2O -$ 39. Product

Product is:

(1) CH₃CH₂CCH₂CH₂CH₃


- (2) CH₃CH₂CH₂CH₂CH₂CH₃
- (3) Both A & B
- (4) None of these
- 40. Which of the following will not form in the following reaction?

$$2CH_3-C \equiv C-H + HC \equiv CH \xrightarrow{\text{Red hot}} ?$$



-CH₃ H_3C 41. Zn powder distillation НО

OH

CH₃

ОН -CH₃ ĊH₃

ОН

42.
$$CH_3$$
 CH_3 $CH_$

Reagent may be -

- (1) Soda lime
- (2) Zinc dust
- (3) Red hot tube
- (4) None of these
- **43.** Benzene upon addition with the mixture of conc. HNO₃ and conc. H₂SO₄ undergoes
 - (1) Nitration
 - (2) Sulphonation
 - (3) Both nitration and sulphonation
 - (4) Neither nitration nor sulphonation
- **44.** Identify the product: CH₃

$$CH_{3}$$

45. Structural formula of Lewisite is:

- **46.** What product are formed when the following compound is treated with Br₂ in the presence of FeBr₃?

$$CH_{3}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{7}$$

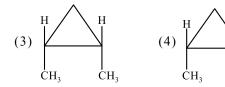
$$C$$

(3)
$$CH_3$$
 and CH_3 CH_4 CH_3 CH_4 CH_5 CH_5

47.
$$C_6H_5Cl + CH_3Cl \xrightarrow{Na/dry \text{ ether}}$$

$$C_6H_5CH_3 + 2NaCl$$

This reaction is an example of:


- (1) Wurtz reaction
- (2) Fittig reaction
- (3) Wurtz-Fittig reaction
- (4) Frankland reaction

48.
$$CH_3-C \equiv C-CH_3$$

$$\xrightarrow{Na/NH_3(I)} P \xrightarrow{CH_2I_2, Zn, \Delta} Product is:$$

$$CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_2I$$

(1)
$$H \xrightarrow{CH_3} CH_2I$$
 (2) $H \xrightarrow{CH_3} CH_2I$ CH_3 CH_3

49. In which of the following Hofmann elimination product is more?

(1)
$$CH_3 - C - CH - CH_3 \xrightarrow{Conc. H_2SO_4} \xrightarrow{C} CH_3 OH$$

(2)
$$CH_3 - C - CH - CH_3 \xrightarrow{Potassium \ ethoxide}$$

(3)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 \xrightarrow[\Gamma]{CH_3} CH_3 \xrightarrow{1. \text{Ag OH}}$$

(4)
$$CH_3 - C - CH_2 - Cl \xrightarrow{alc. KOH} \Delta$$

$$CH_3 - C - CH_2 - Cl \xrightarrow{\Delta}$$

50. Identify Z in the series:

$$CH_{3}CH_{2}CH_{2}OH \xrightarrow{conc. H_{2}SO_{4} \atop 160-180^{\circ}C} (X)$$

$$\xrightarrow{Br_{2}} (Y) \xrightarrow{alc. KOH/\Delta} (Z)$$

$$NaNH_{2}/\Delta$$

$$\begin{array}{c|c} \text{(1) CH}_3 - \text{CH} - \text{CH}_2 \\ & \mid & \mid \\ \text{OH} & \text{OH} \end{array}$$

(2) CH₃CH₂CH(OH)₂

(4)
$$CH_3 - C \equiv CH$$

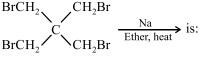
51. Observe the following reaction sequence

$$X \xrightarrow{Br_2/h\nu} Y \xrightarrow{Mg/Ether} Z$$

$$\longrightarrow W \xrightarrow{Al_2O_3} U \xrightarrow{O_3/Zn/H_2O}$$

$$\longrightarrow O$$

X can be:


ÇH₃

(3)

52. $Cl \xrightarrow{AlCl_3} A \xrightarrow{Zn/Hg} Conc.HCl$

B $\xrightarrow{\text{AlCl}_3}$ C. The product C is:

53. The product formed in the reaction

(1) (BrCH₂)₃CCH₂CH₂C(CH₂Br)₃

$$(2) \quad \text{BrCH}_2 \qquad \text{CH}_2 \text{Br}$$

(3)
$$BrCH_2$$
 CH_2Br

54. Which statement is incorrect:

(1) Monobromination of 2-methyl butane produces 3° bromide as major product where as monochlorination of 2-methyl butane produces 1° chloride as major product.

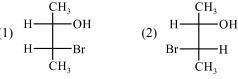
- (2) Halogenation of alkane in presence of sunlight, is followed through free radical mechanism.
- (3) In the reaction of propene with H₂O & Br₂, water act as nucleophile.
- (4) Alkenes undergo electrophilic substitution reaction generally.
- 55. Using corev-house synthesis we can't prepare.....from ethylbromide.
 - (1) CH₃-CH₂-CH₂-CH₃

(2)
$$CH_2-CH_3$$

(4)
$$CH_3 - CH - CH_2 - CH_2 - CH_3$$

 CH_3

- **56.** During Kolbe's electrolysis, pH of electrolyte progressively.
 - (1) Increases
 - (2) Decreases
 - (3) Remains same
 - (4) Cannot be predicted
- 57. In Kolbe's electrolysis sodium propanoate gives:
 - (1) CH₃-CH₃
 - (2) $CH_2=CH_2$
 - (3) CH₃-CH₂-CH₂-CH₃
 - (4) A mixture of 1, 2 and 3
- Which reaction shows the correct stereo **58.** chemical structure of product?


(1)
$$CH_3$$
 $C = CH_3$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

$$(2) \qquad \xrightarrow{Br_2} \xrightarrow{Br_4} \xrightarrow{H} \xrightarrow{H}$$

(3)
$$CH_3 - CH = CH_2 \xrightarrow{Br_2 \atop H_2O} CH_3 - CH - CH_2 \atop OH$$

(4)
$$CH_3 - CH = CHD \xrightarrow{NOCI} CH_3$$
 $CH_3 - CH = CHD \xrightarrow{NOCI} CH_3$ $CH_3 - CH = CHD \xrightarrow{NOCI} CH_3$

- 59. Identify the incorrect statement / statements:
 - (i) Alkynes are more reactive than alkenes towards electrophilic addition reaction
 - (ii) Alkynes are less reactive than alkenes towards electrophilic addition reaction
 - (iii) Alkynes decolourise Br₂ water
 - (iv) Addition of HBr to alkenes in presence of peroxide proceeds via Markownikoff's rule
 - (1) (i) & (ii) only
- (2) (ii) & (iii) only
- (3) (i) & (iv) only
- (4) (ii) & (iv) only
- $\xrightarrow{\text{HOBr}}$ P, identify product 'P' is: cis-2-Butene — 60.

Integer Type Questions (61 to 75)

61. Number of moles of hydrogen required for complete hydrogenation of one mole of following compound:

- **62.** The number of possible monochloro derivatives of 2, 2, 3, 3-Tetramethylbutane is -
- 63. How many products (structural isomers only) are formed by monochlorination of given compound.

- **64.** How many isomeric alkynes on catalytic hydrogenation gives 3-Ethyl-4-methylheptane?
- 65. How many alkenes, alkynes and alkadienes can be hydrogenated to form Isopentane (Including all structural isomers)
- 66. 'n' number of alkenes yield 2,2,3,4,4-pentamethyl-pentane on catalytic hydrogenation and 'm' number of monochloro structural isomers are possible for this compound.

Report your answer as (n + m).

- 67. How many isomeric structural alkene on catalytic hydrogenation gives 3-Methyl hexane.
- 68. How many terminal alkynes having molecular mass 68 g/mol is possible?
- **69.** In the following sequence of reactions, the alkene forms the compound 'B'

CH₃CH=CHCH₃
$$\xrightarrow{O_3}$$
 A $\xrightarrow{H_2O}$ B,

molecular weight of compound B is (in g/mol)

70.
$$CH_3-CH_2-Cl \xrightarrow{2Li} X \xrightarrow{Cul} Y \xrightarrow{CH_3-Cl} Z$$

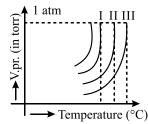
The molecular weight of final product Z is: (in g/mol)

Find the value of
$$\frac{x}{y}$$
.

72. For the given reaction how many monohalo products are optically active (all isomers):

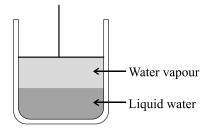
$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \mid & \mid \\ CH_3-C-CH_2-CH-CH_3 \\ \hline \mid & \\ CH_3 \end{array} \longrightarrow \begin{array}{c} Br_2 \ / \ h\upsilon \\ \hline \end{array}$$

73. An isomer of C_5H_{12} gives total six isomeric products on monochlorination. Calculate the percentage yield of the primary monochloride which is chiral. Consider the following relative reactivity of C - H bonds for chlorination.


Degree of C-H	1° C – H	2° C – H	3° C – H
Relative reactivity for chlorinati on (RR)	1	3	5

- **74.** How many of the following statements are correct?
 - (i) Melting point of neo-pentane is greater than that of n-pentane but the boiling point of n-pentane is more than that of neopentane.
 - (ii) Melting point depends upon packing in crystal lattice whereas boiling point depends upon surface area of the molecule.
 - (iii) Propene is less reactive than ethene towards electrophilic addition reactions.
 - (iv) Electron density of double bond increases due to hyperconjugation of methyl group.
- 75. During the electrolysis of sodium ethanoate, the molecular weight of gas liberated at cathode is: (in g/mol)

SOLUTIONS AND COLLIGATIVE PROPERTIES


Single Option Correct Type Questions (01 to 60)

- 1. The plots of $\frac{1}{X_A}$ (on y-axis) vs $\frac{1}{Y_A}$ (on x-axis) (where XA and YA are the mole fractions of liquid A in liquid and vapour phase respectively) is linear with slope and y-intercept respectively.
 - $(1) \quad \frac{P_A^0}{P_B^0} \text{ and } \frac{\left(P_A^0 P_B^0\right)}{P_B^0}$
 - $(2) \quad \frac{P_B^0}{P_A^0} \text{ and } \frac{\left(P_A^0 P_B^0\right)}{P_B^0}$
 - (3) $\frac{P_A^0}{P_B^0}$ and $\frac{\left(P_B^0-P_A^0\right)}{P_D^0}$
 - (4) $\frac{P_B^0}{P_A^0}$ and $\frac{\left(P_B^0 P_A^0\right)}{P_B^0}$
- 2. The vapour pressure curves of the same solute in the same solvent are shown. The curves are parallel to each other and do not intersect. The concentrations of solutions are in order of:

- $(1) \quad I < II < III$
- (2) I = II = III
- (3) I > II > III
- (4) I > III > II

- 3. At higher altitudes, water boils at temperature < 100°C because
 - (1) temperature of higher altitudes is low
 - (2) atmospheric pressure is low
 - (3) the proportion of heavy water increases
 - (4) atmospheric pressure becomes more.
- 4. The vapour pressure of water at 20°C is 17.54 mmHg. What will be the vapour pressure of the water in the apparatus shown after the piston is lowered, decreasing the volume of the gas above the liquid to one half of its initial volume (assume temperature constant).

- (1) 8.77 mmHg
- (2) 17.54 mmHg
- (3) 35.08 mmHg
- (4) between 8.77 and 17.54 mmHg
- **5.** According to Henry's law, the solubility of a gas in a given volume of liquid increases with increase in:
 - (1) Temperature
 - (2) Pressure
 - (3) Both (1) and (2)
 - (4) None of these

6. Which statement about the composition of vapour over an ideal 1:1 molar mixture of benzene and toluene is correct? Assume the temperature is constant at 25°C.

Given, Vapour pressure (25°C) of Pure

Benzene 75 mm Hg Toluene 22 mm Hg

- (1) The vapour will contain higher percentage of benzene
- (2) The vapour will contain higher percentage of toluene
- (3) The vapour will contain equal amount of benzene and toluene
- (4) Not enough information is given to make a prediction
- 7. Which of the following shows negative deviation from Raoult's law?
 - (1) CHCl₃ and acetone
 - (2) CHCl₃ and C₂H₅OH
 - (3) $C_6H_5CH_3$ and C_6H_6
 - (4) C₆H₆ and CCl₄
- **8.** Total vapour pressure of mixture of 1 mol A $(P_A^0 = 150 \text{ torr})$ and 2 mol B $(P_B^0 = 240 \text{ torr})$ is 200 torr. In this case:
 - (1) There is positive deviation from Raoult's law
 - (2) There is negative deviation from Raoult's law
 - (3) There is no deviation from Raoult's law
 - (4) Molecular masses of A and B are also required for calculating the deviation
- 9. For the given electrolyte A_xB_y , the degree of dissociation ' α ' can be given as

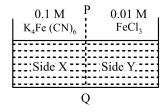
$$(1) \quad \alpha = \frac{i-1}{x+y-1}$$

(2) $i = (1-\alpha) + x\alpha + y\alpha$

$$(3) \quad \alpha = \frac{1-i}{1-x-y}$$

(4) All of these

- 10. The experimental molecular weight of an electrolyte during dissociation will always be less than its calculated value because the value of vant Hoff factor, 'i' is:
 - (1) Less than 1
- (2) Greater than 1


(3) One

- (4) Zero
- 11. Aluminium phosphate is 100% ionised in 0.01 molal aqueous solution. Hence, $\Delta T_b / K_b$ is:
 - (1) 0.01
- (2) 0.015
- (3) 0.0175
- (4) 0.02
- 12. A solution containing 28 g of phosphorus in 315 g CS₂ (b.p. 46.3°C) boils at 47.98°C. If K_b for CS₂ is 2.38 K kg mol⁻¹. The formula of phosphorus is (at. mass of P = 31).
 - (1) P_6

(2) P_4

 $(3) P_3$

- (4) P₂.
- 13. The freezing point of a solution containing 0.2 g of acetic acid in 20.0 g benzene is lowered by 0.45°C. Calculate the degree of association of acetic acid in benzene. Assume acetic acid dimerizes in benzene. K_f for benzene = 5.12 K mol-1 kg.
 - (1) 49.5 %
- (2) 94.5%
- (3) 85.5%
- (4) 58.5%
- 14. FeCl₃ on reaction with K₄[Fe(CN)₆] in aq. solution gives blue colour. These are separated by a semipermeable membrane PQ as shown. Due to osmosis there is-

- (1) Blue colour formation in side X
- (2) Blue colour formation in side Y
- (3) Blue colour formation in both of the sides X and Y
- (4) No blue colour formation

- 15. Osmotic pressure of 30% solution of glucose is 1.20 atm and that of 3.42% solution of cane sugar is 2.5 atm. The osmotic pressure of the mixture containing equal volumes of the two solutions will be
 - (1) 2.5 atm
- (2) 3.7 atm
- (3) 1.85 atm
- (4) 1.3 atm.
- **16.** A solution of a substance (non-electrolyte) containing 1.05 g per 100 mL. was found to be isotonic with 3%(w/v) glucose solution. The molecular mass of the substance is:
 - (1) 31.5

(2) 6.3

(3) 630

- (4) 63
- **17.** Which has maximum osmotic pressure at temperature T:
 - (1) 100 mL of 1 M urea solution
 - (2) 300 mL of 1 M glucose solution
 - (3) Mixture of 100 mL of 1 M urea solution and 300 mL of 1 M glucose solution
 - (4) All are isotonic
- **18.** pH of a 0.1 M monobasic acid is found to be 2. Hence its osmotic pressure at a given temperature T K is-
 - (1) 0.1 RT
- (2) 0.11 RT
- (3) 1.1 RT
- (4) 0.01 RT
- 19. Pressure cooker reduces cooking time because
 - (1) The heat is more evenly distributed inside the cooker
 - (2) A large flame is used
 - (3) Boiling point of water is elevated
 - (4) Whole matter is converted into steam
- **20.** Which of the following is not correct for an ideal solution?
 - (1) $P_A = P_A^0 X_A$
- (2) $\Delta H_{\text{mix}} = 0$
- (3) $\Delta V_{\text{mix}} = 0$
- (4) $\Delta S_{mix} = 0$
- **21. Assertion:** If on mixing the two liquids, the solution becomes hot, it implies that it shows negative deviation from Raoult's law.

Reason: Solution which show negative deviation are accompanied by decrease in volume.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both assertion and reason are incorrect
- 22. The vapour pressure of the solution of two liquids $A(p^o = 80 \text{ mm})$ and $B(p^o = 120 \text{ mm})$ is found to be 100 mm when $x_A = 0.4$. The result shows that
 - (1) Solution exhibits ideal behaviour
 - (2) Solution shows positive deviations
 - (3) Solution shows negative deviations
 - (4) Solution will show positive deviations for lower concentration and negative deviations for higher concentrations.
- **23. Assertion:** 0.1 m aqueous solution of glucose has higher depression in the freezing point than 0.1 m aqueous solution of urea.

Reason: K_f for both has different values.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- 24. Osmotic pressure of blood is 7.40 atm at 27°C. Number of mol of glucose to be used per L at same temperature for an intravenous injection that is to have the same osmotic pressure as blood is:
 - (1) 0.3
 - (2) 0.2
 - (3) 0.1
 - (4) 0.4

25. Assertion: When dried fruits and vegetables are placed in water, they get swelled.

Reason: It happens due to the phenomenon of osmosis.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **26.** If 'A' contains 2% NaCl and is separated by a semipermeable membrane from 'B' which contains 10% NaCl, which event will occur?
 - (1) NaCl will flow from 'A' to 'B'
 - (2) NaCl will flow from 'B' to 'A'
 - (3) Water will flow from 'A' to 'B'
 - (4) Water will flow from 'B' to 'A'
- 27. 6.02×10^{20} molecules of urea are present in 100 ml of its solution. The concentration of urea solution is
 - (1) 0.001 M
- (2) 0.01 M
- (3) 0.02 M
- (4) 0.1 M.
- **28.** Which one of the following aqueous solutions will exhibit highest boiling point?
 - (1) 0.01 M Na₂SO₄
- (2) 0.01 M KNO₃
- (3) 0.015 M urea
- (4) 0.015 M glucose
- **29.** If α is the degree of dissociation of Na₂SO₄, the vant Hoff's factor (i) used for calculating the molecular mass is:
 - (1) $1 + \alpha$
- (2) 1α
- (3) $1 + 2\alpha$
- (4) $1 2\alpha$.
- **30.** Equimolar solutions in the same solvent have. (Assuming i = 1)
 - (1) same boiling point but different freezing point
 - (2) same freezing point but different boiling point
 - (3) same boiling and same freezing points
 - (4) different boiling and freezing points

- 31. Two solutions of a substance (non electrolyte) are mixed in the following manner. 480 ml of 1.5 M first solution + 520 mL of 1.2 M second solution. What is the molarity of the final mixture?
 - (1) 1.20 M
- (2) 1.50 M
- (3) 1.344 M
- (4) 2.70 M
- **32.** Density of a 2.05 M solution of acetic acid in water is 1.02 g/mL. The molality of the solution is
 - (1) 3.28 mol Kg^{-1}
- (2) 2.28 mol Kg^{-1}
- (3) 0.44 mol Kg⁻¹
- (4) 1.14 mol Kg^{-1}
- **33.** A binary liquid solution is prepared by mixing n-heptane and ethanol. Which one of the following statement is correct regarding the behaviour of the solution?
 - The solution is non-ideal, showing +ve deviation from Raoult's Law.
 - (2) The solution in non-ideal, showing –ve deviation from Raoult's Law.
 - (3) n-heptane shows +ve deviation while ethanol shows –ve deviation from Raoult's Law.
 - (4) The solution formed is an ideal solution.
- 34. Two liquids X and Y form an ideal solution. At 300K, vapour pressure of the solution containing 1 mol of X and 3 mol of Y is 550 mmHg. At the same temperature, if 1 mol of Y is further added to this solution, vapour pressure of the solution increases by 10 mmHg. Vapour pressure (in mmHg) of X and Y in their pure states will be, respectively:
 - (1) 300 and 400
- (2) 400 and 600
- (3) 500 and 600
- (4) 200 and 300
- 35. If sodium sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change in freezing point of water (ΔT_f), when 0.01 mole of sodium sulphate is dissolved in 1 kg of water, is

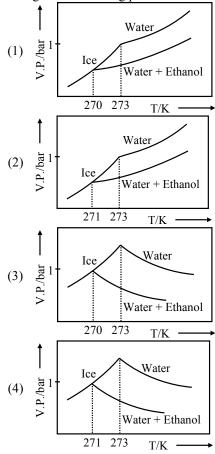
 $(K_f = 1.86 \text{ K kg mol}^{-1})$

- (1) 0.0372 K
- (2) 0.0558 K
- (3) 0.0744 K
- (4) 0.0186 K

- **36.** Consider separate solution of 0.500 M C₂H₅OH(aq), 0.100 M Mg₃(PO₄)₂(aq), 0.250 M KBr(aq) and 0.125 M Na₃PO₄(aq) at 25°C. Which statement is **true** about these solution, assuming all salts to be strong electrolytes? (Assume Mg₃(PO₄)₃ to be completely soluble).
 - (1) They all have the same osmotic pressure.
 - (2) 0.100 M Mg₃(PO₄)₂(aq) has the highest osmotic pressure.
 - (3) 0.125 M Na₃PO₄(aq) has the highest osmotic pressure.
 - (4) 0.500 M C₂H₅OH(aq) has the highest osmotic pressure.
- 37. The vapour pressure of acetone at 20°C is 185 torr. When 1.2 g of a non-volatile substance was dissolved in 100g of acetone at 20°C, its vapour pressure was 183 torr. The molar mass (g mol⁻¹) of the substance is:
 - (1) 32

(2) 64

- (3) 128
- (4) 488
- 38. 18 g glucose ($C_6H_{12}O_6$) is added to 178.2 g water at 760 torr pressure. The vapor pressure of solution (in torr) at boiling point of water is:
 - (1) 76.0
- (2) 752.4
- (3) 759.0
- (4) 7.6
- 39. The solubility of N_2 in water at 300 K and 500 torr partial pressure is 0.01 g L^{-1} . The solubility (in g L^{-1}) at 750 torr partial pressure is:
 - (1) 0.02
- (2) 0.015
- (3) 0.0075
- (4) 0.005
- **40.** An aqueous solution of a salt MX₂ at certain temperature has a van't Hoff factor of 2. The degree of dissociation for this solution of the salt is:
 - (1) 0.67


(2) 0.33

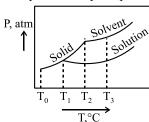
(3) 0.80

- (4) 0.50
- 41. The Henry's law constant for the solubility of N_2 gas in water at 298 K is 1.0×10^5 atm. The mole fraction of N_2 in air is 0.8. The number of moles of N_2 from air dissolved in 10 moles of water of 298 K and 5 atm pressure is:
 - (1) 4×10^{-4}
- (2) 4.0×10^{-5}
- (3) 5.0×10^{-4}
- (4) 4.0×10^{-6}

42. Pure water freezes at 273 K and 1 bar. The addition of 34.5 g of ethanol to 500 g of water changes the freezing point of the solution. Use the freezing point depression constant of water as 2 K kg mol⁻¹. The figures shown below represent plots of vapour pressure (V.P.) versus temperature (T).

[molecular weight of ethanol is 46 g mol⁻¹. Among the following, the option representing change in the freezing point is:

- **43.** Select correct statement(s):
 - (1) When solid CaCl₂ is added to liquid water, the boiling temperature rises
 - (2) When solid CaCl₂ is added to ice at 0°C, the freezing temperature falls
 - (3) Both (1) and (2)
 - (4) None of the above


- **44.** Consider following terms (m = molality):
 - I: mK_b

II: mK_bi

- III: $\frac{\Delta T_b}{i}$
- IV: K_b

Terms which can be expressed in degree (temperature) are

- (1) III, IV only
- (2) I, II only
- (3) I, II, IIII only
- (4) I, III only
- **45.** What is the normal freezing point of the solution represented by the phase diagram?

(1) T_1

(2) T_2

(3) T_3

- (4) T_0
- 46. Total vapour pressure of mixture of 1 mol of volatile component A ($p_A^{\circ} = 100 \text{ mmHg}$) and 3 mol of volatile component B ($p_B^{\circ} = 60 \text{ mmHg}$) is 75 mm. For such case:
 - (1) There is positive deviation from Raoult's low
 - (2) Boiling point has been lowered
 - (3) Force of attraction between A and B is smaller than that between A and A or between B and B
 - (4) All the above statements are correct
- **47.** Select correct statements:
 - (1) The fundamental cause of all colligative properties is the higher entropy of the solution relative to that of the pure solvent
 - (2) The freezing point of hydrofluoride solution is larger than that of equimolal hydrogen chloride solution
 - (3) 1M glucose solution and 0.5 M NaCl solution are isotonic at a given temperature
 - (4) All are correct statements

- **48.** An azeotropic solution of two liquids has a boiling point lower than either of them when it:
 - (1) shows negative deviation from Raoult's law
 - (2) shows positive deviation from Raoult's low
 - (3) shows ideal behaviour
 - (4) is saturated
- **49.** Which of the following azeotropic solutions has the boiling point more than boiling point of the constituents A and B?
 - (1) CHCl₃ and CH₃COCH₃
 - (2) CS₂ and CH₃COCH₃
 - (3) CH₃CH₂OH and CH₃COCH₃
 - (4) CH₃CHO and CS₂
- **50.** Select correct statement?
 - (1) Heats of vaporisation for a pure solvent and for a solution are similar because similar intermolecular forces between solvent molecules must be overcome in both cases (for ideal solution)
 - (2) Entropy change between solution and vapour is smaller than the entropy change between its pure solvent and vapour
 - (3) Boiling point of the solution is larger than that of the pure solvent
 - (4) All are correct statements
- 51. What will be the molecular weight of NaCl determined experimentally from elevation in the boiling point or depression in freezing point method?
 - (1) < 58.5
- (2) > 58.5
- (3) = 58.5
- (4) None of these
- **52.** Which of the following liquid pairs shows a positive deviation from Raoult's law?
 - (1) Acetone chloroform
 - (2) Benzene methanol
 - (3) Water nitric acid
 - (4) Water hydrochloric acid
- **53.** A 6.90 M solution of KOH in water has 30% by weight of KOH. Calculate density of solution.
 - (1) 1.288 g mL^{-1}
- (2) 12.88 g mL^{-1}
- (3) 24.88 g mL^{-1}
- (4) 2.488 g mL^{-1}

- **54.** The best colligative property used for the determination of molecular masses of polymers is:
 - (1) Relative lowering in vapour pressure
 - (2) Osmotic pressure
 - (3) Elevation in boiling point
 - (4) depression in freezing point
- 55. Consider equimolal aqueous solutions of NaHSO₄ and NaCl with ΔT_b and $\Delta T'_b$ as their respective boiling point elevations. The value

of Lt
$$\Delta T_b$$
 will be:

(1) 1

(2) 1.5

(3) 3.5

- (4) 2/3
- 56. A complex of iron and cyanide ions is 100% ionised at 1m (molal). If its elevation in b.p. is 2.08 K. $(K_b = 0.52 K \text{ mol}^{-1} \text{ kg})$, then the complex is:
 - (1) $K_3[Fe(CN)_6]$
- (2) $Fe(CN)_2$
- (3) $K_4[Fe(CN)_6]$
- (4) Fe(CN)₄
- 57. 3.24 g of $Hg(NO_3)_2$ (molar mass = 324) dissolved in 1000 g of water constitutes a solution having a freezing point of $-0.0558^{\circ}C$ while 21.68 g of $HgCl_2$ (molar mass = 271) in 2000 g of water constitutes a solution with a freezing point of $-0.0744^{\circ}C$. The K_f for water
 - is $1.86 \frac{K Kg}{Mol}$. About the state of ionization of

these two solids in water it can be inferred that:

- (1) Hg(NO₃)₂ and HgCl₂ both are completely ionized
- (2) Hg(NO₃)₂ is fully ionized but HgCl₂ is fully unionized
- (3) Hg(NO₃)₂ and HgCl₂ both are completely unionized
- (4) Hg(NO₃)₂ is fully unionized but HgCl₂ is fully ionized
- **58.** Match List I with List II and select the correct answer using the code given below the lists:

	List- I	List- II		
I	Relative	P	Negative	
	lowering in		deviation from	
	vapour		ideal	
	pressure		behaviour	
II	Depression in	Q	Walker and	
	freezing point		Ostwald	
			Method	
III	ΔHmix < Zero	R	Beckmann	
		thermometer		
IV	Osmotic	S	Berkeley and	
	pressure		Hartley's	
			method	

- (1) I-P; II-Q; III-R; IV-S
- (2) I-Q; II-P; III-S; IV-R
- (3) I-Q; II-R; III-P; IV-S
- (4) I-R; II-S; III-Q; IV-P
- **59.** Match List I with List II and select the correct answer using the code given below the lists:

	List- I		List- II
I	0.1M NaCl	P	$\pi = 0.3 \text{ RT}$
II	0.2 M Na2SO4	Q	$\pi = 0.4 \text{ RT}$
III	0.1M Al(NO3)3	R	$\pi = 0.6 \text{ RT}$
IV	0.1M Ca(NO3)2	S	$\pi = 0.20$
			RT

- (1) I-S; II-R; III-Q; IV-P
- (2) I-S; II-P; III-Q; IV-R
- (3) I-P; II-Q; III-R; IV-S
- (4) I-P; II-Q; III-R; IV-S
- **60.** List-I and List-II contains four entries each. Entries of List-I are to be matched with entries of List-II.

	List- I	List- II	
I	AlCl ₃ if $\alpha = 0.8$	P	i = 3.4
II	BaCl ₂ if $\alpha = 0.9$	Q	i = 2.8
III	Na_3PO_4 if $\alpha = 0.9$	R	i = 3.8
IV	$K_4[Fe(CN)6]$ if $\alpha = 0.7$	S	i = 3.7

- (1) I-P; II-Q; III-S; IV-R
- (2) I-Q; II-P; III-S; IV-R
- (3) I-Q; II-R; III-P; IV-S
- (4) I-R; II-S; III-Q; IV-P

Integer Type Questions (61 to 75)

- 61. 15 gram of methyl alcohol is dissolved in 35 gram of water. What is the mass percentage of methyl alcohol in solution?
- 62. At 323 K, the vapour pressure in millimeters of mercury of a methanol-ethanol solution is represented by the equation $p = 120 X_A + 140$, where X_A is the mole fraction of methanol.

Then the value of $\lim_{x_A \to 1} \frac{p_A}{X_A}$ is (in millimeters of Hg)

- 63. The van't Hoff factor i for an infinitely dilute solution of NaHSO₄ is:
- 64. What weight of solute (non-electrolyte) (molecular weight = 60) is required to dissolve in 180 g of water to reduce the vapour pressure to $\frac{4}{5}$ th of pure water? (in g)
- 65. Moles of K₂SO₄ to be dissolved in 12 mol water to lower its vapour pressure by 10 mmHg at a temperature at which vapour pressure of pure water is 50 mm is:
- 66. Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The partial vapour pressure of benzene at 20 °C for a solution containing 78 g of benzene and 46 g of toluene in torr is:
- 67. A mixture of ethyl alcohol and propyl alcohol has a vapour pressure of 290 mm at 300 K. The vapour pressure of propyl alcohol is 200 mm. If the mole fraction of ethyl alcohol is 0.6, its vapour pressure (in mm) at the same temperature will be
- 68. K_f for water is 1.86 K kg mol⁻¹. If your automobile radiator holds 1.0 kg of water, how may grams of ethylene glycol (C₂H₆O₂) must you add to get the initial freezing point of the solution lowered to -2.8°C? [Nearest integer]

- **69.** 5 g of Na₂SO₄ are dissolved in x g of H₂O. The change in freezing point was found to be 3.82°C. If Na₂SO₄ is 81.5% ionised, the value of x (K_f for water = 1.86°C kg mol⁻¹) is. (Nearest integer) (molar mass of S= 32 g mol⁻¹ and that of Na = 23 g mol⁻¹)
- **70.** The density of a solution prepared by dissolving 120 g of urea (molar mass = 60) in 1000 g of water is 1.15 g/mL. The molarity of this solution is:
- 71. If relative decrease in vapour pressure is 0.4 for a solution containing 1 mol NaCl in 3 mol H₂O, NaCl is % ionized.
- 72. A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass = 60g mol⁻¹) in the same solvent. If the densities of both the solutions are assumed to be equal to 1.0 g cm⁻³, molar mass of the substance will be (in gram)
- 73. On mixing, heptane and octane form an ideal solution. At 373 K, the vapour pressures of the two liquid components (heptane and octane) are 105 kPa and 45 kPa respectively. Vapour pressure (in kPa) of the solution obtained by mixing 25.0 g of heptane and 35 g of octane will be. (Molar mass of heptane 100 g mol⁻¹ and of octane = 114 g mol⁻¹) [Nearest Integer]
- 74. Insulin $(C_2H_{10}O_5)_n$ is dissolved in a suitable solvent and the osmotic pressure, π of the solution of various concentration, c (in kg/m³) is measured at 20°C. The slope of a plot of π against c is found to be 8.314 \times 10⁻³ (SI units) The molecular weight of the insulin (in kg/mol) is x \times 10³. Find x. [R = 8.314 J/mol/K]
- 75. A solution is prepared by mixing 8.5 g of CH₂Cl₂ and 11.95 g of CHCl₃. If vapour pressure of CH₂Cl₂ and CHCl₃ at 298 K are 415 and 200 mmHg respectively, the mole fraction of CHCl₃ in vapour form is X.

(Molar mass of Cl = 35.5 g/mol). Find the value of 1000X. (Nearest integer)

ELECTROCHEMISTRY

Single Option Correct Type Questions (01 to 60)

1. Which of the following statements is true for an electrochemical cell?

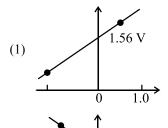
Pt, $H_2(g)1$ atm $| H^+(1M) | | Cu^{2+}(1 M) | Cu(s)$

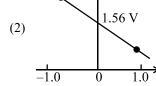
- (1) H₂ is anode and Cu is cathode
- (2) H₂ is cathode and Cu is anode
- (3) Reduction occurs at H₂ electrode
- (4) Oxidation occurs Cu electrode
- **2.** Which is not true for a standard hydrogen electrode?
 - (1) The hydrogen ion concentration is 1 M
 - (2) Temperature is 25°C
 - (3) Pressure of hydrogen is 1 atmosphere
 - (4) It contains a metallic conductor which does not absorb hydrogen.
- 3. In the galvanic cell $Cu \mid Cu^{2+}(1M) \mid \mid Ag^{+}(1M) \mid$ Ag, the electrons will travel in the external circuit:
 - (1) From Ag to Cu
 - (2) From Cu to Ag
 - (3) Electrons do not travel in the external circuit
 - (4) In any direction
- **4.** Adding powdered Pb and Fe to a solution containing 1.0 M is each of Pb²⁺ and Fe²⁺ ions would result into the formation of

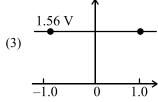
(Given: $E^{\circ}_{Pb^{2+}/Pb} = -0.13 \text{ V}$ and $E^{\circ}_{Fe^{2+}/Fe} = -0.44 \text{ V}$ at 298 K)

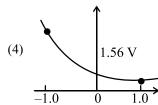
- (1) More of Pb and Fe²⁺ ions
- (2) More of Fe and Pb²⁺ ions

- (3) More of Fe and Pb
- (4) More of Fe²⁺ and Pb²⁺ ions
- 5. The oxidation potential of Zn, Cu, Ag, H₂ and Ni are 0.76, -0.34, -0.80, 0, 0.55 volt respectively. Which of the following reaction will provide maximum voltage?
 - (1) $Zn + Cu^{2+} \longrightarrow Cu + Zn^{2+}$
 - $(2) Zn + 2Ag^{+} \longrightarrow 2Ag + Zn^{2+}$
 - (3) $H_2 + Cu^{2+} \longrightarrow 2H^+ + Cu$
 - (4) $H_2 + Ni^{2+} \longrightarrow 2H^+ + Ni$
- **6.** Red hot carbon will remove oxygen from the oxide AO and BO but not from MO, while B will remove oxygen from AO. The activity of metals A, B and M in decreasing order is
 - (1) A > B > M
 - (2) B > A > M
 - (3) M > B > A
 - (4) M > A > B
- 7. The reduction electrode potential E, of 0.1 M solution of M⁺ ions ($E^{\circ}_{RP} = -2.36 \text{ V}$) is:
 - (1) 2.41 V
- (2) + 2.41 V
- (3) 4.82 V
- (4) 2.36 V
- **8.** The emf of the cell


Ti | Ti⁺ (0.0001M) || $Cu^{2+}(0.01M)$ |Cu is 0.83 V The emf of this cell will be increased by:


- (1) Increasing the concentration of Cu²⁺ ions
- (2) Decreasing the concentration of Ti⁺
- (3) Increasing the concentration of both
- (4) (1) & (2) both


9. Which graph correctly correlates E_{cell} as a function of concentrations for the cell


$$Zn(s) + 2Ag^{+}(aq) \longrightarrow Zn^{2+}(aq) + 2Ag(s), E^{o}_{cell}$$

= 1.56 V

 $Y\text{-axis}: E_{cell}, X\text{-axis}: log_{10} \ \frac{[Zn^{2^+}]}{{[Ag^+]}^2}$

- 10. W g of copper deposited in a copper voltameter when an electric current of 2 ampere is passed for 2 hours. If one ampere of electric current is passed for 4 hours in the same voltameter, copper deposited will be:
 - (1) W

(2) W/2

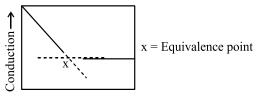
- (3) W/4
- (4) 2W
- 11. When the same electric current is passed through the solution of different electrolytes in

series, the amounts of elements deposited on the electrodes are in the ratio of their:

- (1) atomic number
- (2) atomic masses
- (3) specific gravities
- (4) equivalent masses
- 12. When a lead storage battery is discharged
 - (1) PbSO₄ is formed
 - (2) Pb is formed
 - (3) SO₂ is consumed
 - (4) H₂SO₄ is formed
- 13. By the electrolysis of aqueous solution of CuSO₄ using inert electrodes, the products obtained at both the electrodes are
 - (1) O_2 at anode and H_2 at cathode
 - (2) H₂ at anode and Cu at cathode
 - (3) O₂ at anode and Cu at cathode
 - (4) $H_2S_2O_8$ at anode and O_2 at cathode
- **14.** A fuel cell is:
 - (1) The voltaic cells in which continuous supply of fuels are send at anode to give oxidation
 - (2) The votalic cell in which fuels such as : CH₄, H₂, CO are used up at anode
 - (3) It involves the reactions of $H_2 O_2$ fuel cell such as:

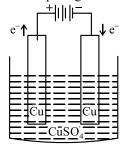
Anode:
$$2H_2 + 4OH^- \longrightarrow 4H_2O(\ell) + 4e$$

Cathode:
$$O_2 + 2H_2O(\ell) + 4e \longrightarrow 4OH^-$$


- (4) All of the above
- **15.** Which of the following solutions of NaCl will have the highest specific conductance?
 - (1) 0.001 N
- (2) 0.1 N
- (3) 0.01 N
- (4) 1.0 N
- 16. The specific conductivity of a saturated solution of AgCl is 3.40×10^{-6} ohm $^{-1}$ cm $^{-1}$ at 25 °C. If $\lambda_{Ag^+} = 62.3$ ohm $^{-1}$ cm 2 mol $^{-1}$ & $\lambda_{Cl} = 67.7$ ohm $^{-1}$ cm 2 mol $^{-1}$, the solubility of AgCl at 25 °C is:
 - (1) $2.6 \times 10^{-5} \text{ M}$
- (2) $4.5 \times 10^{-3} \text{ M}$
- (3) $3.6 \times 10^{-5} \,\mathrm{M}$
- (4) $3.6 \times 10^{-3} \text{ M}$

- 17. The specific conductance of a 0.01 M solution of KCl is 0.0014 ohm⁻¹ cm⁻¹ at 25°C. its equivalent conductance (cm² ohm⁻¹ equiv⁻¹) is:
 - (1) 140

(2) 14


(3) 1.4

- (4) 0.14
- **18.** Following curve for conductometric titration is obtained when:

- Volume of Solutions →
- (1) NaOH solution is added in to HCl solution
- (2) NaOH solution is added in to CH₃COOH solution
- (3) NH₄OH solution is added in to HCl solution
- (4) NH₄OH solution is added in to CH₃COOH solution
- **19.** Corrosion of iron is essentially an electrochemical phenomenon where the cell reactions are
 - (1) Fe is oxidised to Fe²⁺ and dissolved oxygen in water is reduced to OH⁻
 - (2) Fe is oxidised to Fe³⁺ and H_2O is reduced to O_2^{2-}
 - (3) Fe is oxidised to Fe $^{2+}$ and $\mbox{\rm H}_2\mbox{\rm O}$ is reduced to $\mbox{\rm O}_2^{2-}$
 - (4) Fe is oxidised to Fe^{2+} and H_2O is reduced to O_2
- 20. Given: $E^{\circ}(Cu^{2+} \mid Cu) = 0.337 \text{ V}$ and $E^{\circ}(Sn^{2+} \mid Sn) = -0.136 \text{ V}$. Which of the following statements is correct?
 - (1) Cu^{2+} ions can be reduced by $H_2(g)$
 - (2) Cu can be oxidized by H⁺
 - (3) Sn^{2+} ions can be reduced by $H_2(g)$
 - (4) Cu can reduce Sn²⁺

- 21. How much will the potential of a hydrogen electrode change when its solution initially at pH = 0 is neutralised to pH = 7?
 - (1) Increase by 0.059 V
 - (2) Decrease by 0.059 V
 - (3) Increase by 0.41 V
 - (4) Decrease by 0.41 V
- 22. In the adjacent diagram the electrolytic cell contains 1 L of an aqueous 1 M Copper (II) sulphate solution. If 0.4 mole of electrons are passed through cell, the concentration of copper ion after passage of the charge will be

- (1) 0.4 M
- (2) 0.8 M
- (3) 1.0 M
- (4) 1.2 M
- 23. A solution containing one mole per litre of each Cu(NO₃)₂; AgNO₃; Hg₂(NO₃)₂; is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reduction potentials) are:

$$Ag/Ag^{+} = -0.80 \text{ V}$$
, $Hg/Hg_{2}^{++} = -0.79 \text{ V}$, $Cu/Cu^{++} = -0.34 \text{ V}$, $Mg/Mg^{++} = +2.37 \text{ V}$ With increasing voltage, the sequence of deposition of metals on the cathode will be:

- (1) Ag, Hg, Cu, Mg
- (2) Mg, Cu, Hg, Ag
- (3) Ag, Hg, Cu
- (4) Cu, Hg, Ag
- **24.** In $H_2 O_2$ fuel cell the reaction occurring at cathode is:

(1)
$$2 \text{ H}_2\text{O} + \text{O}_2 + 4 \text{ e}^- \longrightarrow 4 \text{ OH}^-$$

- (2) $2 H_2 + O_2 \longrightarrow 2 H_2 O(l)$
- $(3) H^+ + OH^- \longrightarrow H_2O$
- $(4) H^+ + e^- \longrightarrow \frac{1}{2} H_2.$

- 25. Which process involves corrosion?
 - (1) Brown deposits on iron articles
 - (2) Green deposits on battery terminals
 - (3) Black deposits on silver coin
 - (4) All of the above
- 26. The corrosion of iron object is favoured by:
 - (1) Presence of H⁺ ion
 - (2) Presence of moisture in air
 - (3) Presence of impurities in iron object
 - (4) All of the above
- 27. A hydrogen electrode placed in a buffer solution of CH₃COONa and CH₃COOH in the ratios of x : y and y : x has electrode potential values E₁ volts and E₂ volts, respectively at 25°C. The pK_a values of acetic acid is (E₁ and E₂ are oxidation potentials)
 - (1) $\frac{E_1 + E_2}{0.118}$
 - (2) $\frac{E_2 E_1}{0.118}$
 - (3) $-\frac{E_1 + E_2}{0.118}$ (4) $\frac{E_1 E_2}{0.118}$
- If $E_{Ee^{2+}/Ee}^{\circ} = -0.441 \text{ V}$ and $E_{Ee^{3+}Ee^{2+}}^{\circ} =$ 28. 0.771 V, the standard EMF of the reaction $Fe + 2Fe^{3+} \longrightarrow 3Fe^{2+}$ will be:
 - (1) 1.212 V
- (2) 0.111 V
- (3) 0.330 V
- (4) 1.653 V
- 29. In a salt bridge, KCl is used because:
 - (1) It is an electrolyte
 - (2) It is good conductor of electricity
 - (3) The transport number of K⁺ and Cl⁻ ions are nearly same or both have same ionic mobility
 - (4) It is ionic compound
- By how much will the potential of half-cell **30.** Cu²⁺/Cu change if the solution is diluted to 100 times at 298K
 - (1) Increases by 59 mV
 - (2) Decreases by 59 mV
 - (3) Increases by 29.5 mV
 - (4) Decreases by 29.5 mV

31. A 1 M solution of H₂SO₄ is electrolyzed. Select right statement with products at anode and cathode respectively

Given:
$$2SO_4^{2-} \longrightarrow S_2O_8^{2-} + 2e^-$$
;
 $E^0 = -2.01 \text{ V}$

$$H_2O(\ell) \longrightarrow 2H^+(aq) + 1/2O_2(g) + 2e^-;$$

$$E^{\circ} = -1.23 \text{ V}$$

- (1) concentration of H₂SO₄ remain constant ; H_2, O_2
- (2) concentration of H₂SO₄ increases; O₂, H₂
- (3) concentration of H₂SO₄ decreases; O₂, H₂
- (4) concentration of H₂SO₄ remains constant; $S_2O_8^{2-}$, H_2
- 32. A solution of sodium sulphate in water is electrolyzed using inert electrodes. The products at the cathode and anode are respectively
 - (1) H_2, O_2
- (2) O_2 , H_2
- (3) O₂, Na
- (4) O₂, SO₂
- 33. Electrolysis of a solution of MnSO₄ in aqueous sulphuric acid is a method for the preparation of MnO₂. Passing a current of 27A for 24 hours gives 1kg of MnO2. The current efficiency in this process is:
 - (1) 100%
- (2) 95.185%
- (3) 80%
- (4) 82.951%
- 34. **Assertion:** $E^{o}_{cell} = 0$ for a chloride ion concentration cell.

Reason: For this concentration cell,

$$E_{cell} = \frac{RT}{nF} \ln \frac{[Cl^-]_{LHS}}{[Cl^-]_{RHS}}$$

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect

35. **Assertion:** Conductivity always increases with the decrease in concentration of both the weak and strong electrolytes.

> Reason: No. of ions per unit volume linearly decreases in both electrolytes.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is
- (4) Both are assertion and reason are incorrect
- 36. **Assertion:** If SRP of substance is -0.5 V then reduction of substance is possible in basic medium.

Reason: SRP of water is -0.8274 V and reduction potential is zero at pH = 7.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is correct, but the reason is incorrect
- (4) Both are assertion and reason are incorrect
- 37. For the following cell with hydrogen electrodes at two different pressure p₁and p₂,

Pt
$$| H_2(g) | H^+(aq) | H_2(g) | Pt$$

 p_1 1M p_2

$$p_1$$
 1M

emf is given by:

(1)
$$\frac{RT}{F} \log_e \frac{p_1}{p_2}$$
 (2) $\frac{RT}{2F} \log_e \frac{p_1}{p_2}$

(2)
$$\frac{RT}{2F}\log_e \frac{p_1}{p_2}$$

(3)
$$\frac{RT}{F} \log_e \frac{p_2}{p_1}$$
 (4) $\frac{RT}{2F} \log_e \frac{p_2}{p_1}$

(4)
$$\frac{RT}{2F}\log_e \frac{p_2}{p_1}$$

38. For a cell given below:

$$Ag \mid Ag^+ \parallel Cu^{2+} \mid Cu$$

$$Ag^+ + e^- \longrightarrow Ag$$

$$E_o = x$$

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$
,

$$E^{o} = y$$

The value of E°_{cell} is:

(1)
$$x + 2y$$

(2)
$$2x + y$$

$$(3) v - x$$

(4)
$$y - 2x$$

- 39. For a cell reaction involving a two-electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction at 25°C will be:
 - (1) 1×10^{-10}

(2)
$$29.5 \times 10^{-2}$$

(4)
$$1 \times 10^{10}$$

Consider the following E⁰ values: 40.

$$E^0_{E_s^{3+}/E_s^{2+}} = +0.77 \text{ V}; \qquad E^0_{S_s^{2+}/S_s} = -0.14 \text{ V}$$

Under standard conditions, the cell potential for the reaction given below is:

$$Sn_{(s)} + 2Fe^{3+}_{(aq)} \rightarrow 2Fe^{2+}_{(aq)} + Sn^{2+}_{(aq)}$$

(1) 1.68 V

(2) 1.40 V

(4) 0.63 V

41. In a cell that utilizes the reaction

$$Pb_{(s)} + 2H^{+}_{(aq)} \rightarrow Pb^{2+}_{(aq)} + H_{2(g)},$$

addition of HCl to cathode compartment will:

- (1) lower the E and shift equilibrium to the left.
- (2) lower the E and shift the equilibrium to the
- (3) increase the E and shift the equilibrium to
- (4) increase the E and shift the equilibrium to the left.
- The $E^0_{M^{3+}/M^{2+}}$ values for Cr, Mn, Fe and Co 42. are - 0.41, + 1.57, + 0.77 and + 1.97 V respectively. For which one of these metals, the change in oxidation state from +2 to +3 is easiest:
 - (1) Cr

(2) Mn

(3) Fe

- (4) Co
- The molar conductivities Λ^0_{NaOAc} and Λ^0_{HCl} at 43. infinite dilution in water at 25°C are 91.0 and 426.2 Scm²/mol respectively. To calculate Λ_{HOAc}^{0} , the additional value required is:
 - (1) $\Lambda_{\text{H}_2\text{O}}^0$
- (2) Λ_{KCI}^0
- (3) Λ_{NaOH}^0
- (4) Λ_{NaCl}^0

44. Given data is at 25°C:

$$Ag + I^{-} \rightarrow AgI + e^{-}$$
; $E^{\circ} = 0.152 \text{ V}$

$$Ag \rightarrow Ag^{+} + e^{-}$$
; $E^{\circ} = -0.800 \text{ V}$

What is the value of log K_{sp} for AgI: (Take

$$\frac{0.474}{0.059} = 8.065$$

- (1) 8.12
- (2) + 8.612
- (3) 37.83
- (4) 16.13
- 45. In a cell that utilises the reaction: $Zn(s) + 2H^{+}$

$$(0.1M) \longrightarrow Zn^{2+} (aq) + H_2 (g)$$

addition of 0.1 M H₂SO₄ to cathode compartment will:

- (1) Increase the cell emf and shift equilibrium to the left.
- (2) Lower the cell emf and shift equilibrium to the right.
- (3) Increase the cell emf and shift equilibrium to the right.
- (4) Lower the cell emf and shift equilibrium to the left.
- 46. The cell $Zn | Zn^{2+}(1M) | Cu^{2+}(1M) | Cu : (E^{\circ}cell = 1.10V)$ was allowed to completely discharge at 298 K. The relative concentration of Zn^{2+} to

$$Cu^{2+} \left(\frac{\left[Zn^{2+} \right]}{\left[Cu^{2+} \right]} \right)$$
 is: (Take $\frac{1.1}{0.059} = 18.65$)

- $(1) 10^{37.3}$
- (2) 9.65×10^{4}
- (3) antilog (24.08)
- (4) 37.3
- **47.** Given: $E_{Cr^{3+}/Cr}^{0} = -0.72$, $E_{Fe^{2+}/Fe}^{0} = -0.42 \text{ V}$

The potential for the cell Cr | Cr³⁺(0.1 M) || Fe²⁺(0.01 M) | Fe at 298 K is: (Take $\frac{2.303 R (298)}{F} = 0.06$

- (1) 0.339 V
- (2) 0.339 V
- (3) 0.26 V
- (4) 0.26 V
- **48.** The Gibbs energy for the decomposition of Al₂O₃ at 500°C is as follows:

$$\frac{2}{3} A l_2 O_3 \rightarrow \frac{4}{3} A l + O_2 \, ; \, \Delta_r G = + \, 966 \ kJ \ mol^{-1}. \label{eq:delta_fit}$$

The potential difference needed for electrolytic reduction of Al₂O₃ at 500°C is at least:

- (1) 4.5 V
- (2) 3.0 V
- (3) 2.5 V
- (4) 5.0 V
- **49.** The reduction potential of hydrogen half-cell will be negative, if:
 - (1) $p(H_2) = 1$ atm and $[H^+] = 2.0 \text{ M}$
 - (2) $p(H_2) = 1$ atm and $[H^+] = 1.0 M$
 - (3) $p(H_2) = 2$ atm and $[H^+] = 1.0$ M
 - (4) $p(H_2) = 2$ atm and $[H^+] = 2.0$ M
- 50. Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.4 S m⁻¹. The resistance of 0.5 M solution of the same electrolyte is 280 Ω . The molar conductivity of 0.5 M solution of the electrolyte in S m² mol⁻¹ is:
 - (1) 5×10^{-4}
- (2) 5×10^{-3}
- (3) 5×10^3
- (4) 5×10^2
- 51. The equivalent conductance of NaCl at concentration C and at infinite dilution are Λ_C and Λ_{∞} , respectively. The correct relationship between Λ_C and Λ_{∞} is given as : (where the constant B is positive)
 - (1) $\Lambda_C = \Lambda_\infty + (B)C$
 - (2) $\Lambda_{\rm C} = \Lambda_{\infty} ({\rm B}){\rm C}$
 - (3) $\Lambda_{\rm C} = \Lambda_{\infty} ({\rm B}) \sqrt{{\rm C}}$
 - (4) $\Lambda_{\rm C} = \Lambda_{\infty} + ({\rm B}) \sqrt{{\rm C}}$
- **52.** Given below are the half-cell reactions:

$$Mn^{2+} + 2e^{-} \longrightarrow Mn$$
; $E^{o} = -1.18 \text{ V}$

$$2(Mn^{3+} + e^{-} \longrightarrow Mn^{2+})$$
; $E^{o} = +1.51 \text{ V}$

The E° for $3Mn^{2+} \longrightarrow Mn + 2Mn^{3+}$ will be:

- (1) -2.69 V; the reaction will not occur
- (2) -2.69 V; the reaction will occur
- (3) -0.33 V; the reaction will not occur
- (4) -0.33 V; the reaction will occur

- 53. How many electrons would be required to deposit 6.35 g of copper at the cathode during the electrolysis of an aqueous solution of copper sulphate? (Atomic mass of copper = 63.5 u, $N_A = \text{Avogadro's constant}$).
 - (1) $\frac{N_A}{20}$
- (2) $\frac{N_A}{10}$
- $(3) \quad \frac{N_A}{5}$
- (4) $\frac{N_A}{2}$
- 54. At 298 K, the standard reduction potentials are 1.51 V for MnO₄⁻ |Mn²⁺, 1.36 V for Cl₂|Cl⁻, 1.07 V for Br₂|Br, and 0.54 V for I₂|I⁻. At pH = 3, permanganate is expected to oxidize: $\left(\frac{RT}{F} = 0.059 \text{ V}\right)$
 - (1) Cl⁻, Br⁻ and I⁻
- (2) Br and I
- (3) Cl⁻ and Br⁻
- (4) I⁻ only
- **55.** Consider the following standard electrode potentials (E° in volts) in aqueous solution:

		•
Element	M^{3+}/M	$\mathbf{M}^+ / \mathbf{M}$
Al	-1.66	+ 0.55
Tl	+1.26	-0.34

Based on these data, which of the following statements is **correct**?

- (1) Al⁺ is more stable than Al³⁺
- (2) Tl^{3+} is more stable than Al^{3+}
- (3) Tl^+ is more stable than Al^{3+}
- (4) Tl⁺ is more stable than Al⁺
- **56.** To find the standard potential of M³⁺/M electrode, the following cell is constituted:

 $Pt \; / \; M \; / \; M^{3+} \; (0.001 \; mol \; L^{-1}) \; / \; Ag^+ \; (0.01 \; mol \; L^{-1}) / Ag$

The emf of the cell is found to be 0.421 volt at 298 K. The standard potential of half reaction

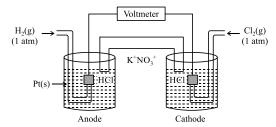
 $M^{3+} + 3e^- \longrightarrow M$ at 298 K will be: (Given

$$E_{Ag^+/Ag}^{o}$$
 at 298 K = 0.80 volt)

- (1) 0.32 Volt
- (2) 0.66 Volt
- (3) 0.38 Volt
- (4) 1.28 Volt
- 57. Which is/are correct among the following? Given, the half-cell emf's

$$E^0_{Cu^{+2}|Cu} = 0.337\,, \ E^0_{Cu^{+1}|Cu} = 0.521$$

- (1) Cu⁺¹ disproportionates
- (2) Cu and Cu²⁺ comproportionates.
- (3) $E_{Cu+Cu+2}^{0} + E_{Cu+1+Cu}^{0}$ is positive
- (4) (1) and (3) Both
- **58.** The E° in the given figure is about:


- (1) 0.5 V
- (2) 0.6 V
- (3) 0.7 V
- (4) 0.8 V
- **59.** The standard reduction potential for Zn^{+2}/Zn ; Ni^{+2}/Ni ; and Fe^{+2}/Fe are -0.76 V, -0.23 V, -0.44 V respectively. The reaction $X + Y^{+2} \longrightarrow X^{+2} + Y$ will be non-spontaneous when:

- (I) Ni Fe
- (II) Ni Zn
- (III) Fe Zn
- (VI)Zn Ni
- (1) I, II, IV only
- (2) I, II, III only
- (3) II, III, IV only
- (4) All of these
- 60. How much will the reduction potential of a hydrogen electrode change when its solution initially at pH = 0 is increased to pH = 14 at 25° C?
 - (1) Increases by 0.059 V
 - (2) Decreases by 0.082 V
 - (3) Increases by 0.41 V
 - (4) Decreases by 0.82 V

Integer Type Questions (61 to 75)

- **61.** Consider the following Galvanic cell as shown in figure. If value the cell voltage change is
 - $-\frac{x}{1000}$ when concentration of ions in anodic

and cathodic compartments are both increased by factor of 10 at 298 K then the value of x is

- 62. During electrolysis of conc. H_2SO_4 , perdisulphuric acid $(H_2S_2O_8)$ and O_2 are formed in equimolar amount which is one moles each. The moles of H_2 that will be produced simultaneously will be y. Find y
- 63. The cell Pt, H₂(g) (1 atm) $|H^+, pH = \frac{x}{10}|$ Normal calomel electrode has emf of 0.67 V at 25°C. The oxidation potential of calomel electrode on H-scale is -0.28 V. The value of x is $\left(\text{Let } \frac{2.303\,\text{RT}}{F} = 0.06\right)$
- **64.** For the cell, Pt | H₂ (g) | H⁺ (aq) || Cu²⁺ (aq) | Cu (s) $E^{\circ}_{Cu/Cu^{2+}} = -0.34 \text{ V}$

Then calculate approximate value of K_{eq} is 2×10^x . The value of x

65. The standard electrode potential for the reaction

$$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$$

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$$

at 25°C are 0.80 volt and – 0.14 volt, respectively. The emf of the cell

$$(Sn|Sn^{+2}||Ag^{+}|Ag)$$
 is $\frac{x}{100}V$,

the value of x will be

$$Sn \mid Sn^{2+}(1M) \mid Ag^{+}(1M) \mid Ag$$
 is:

66. The standard electrode potentials of the two half-cell are given below:

$$Ni^{2+} + 2e^{-} \rightarrow Ni$$
; $E^{\circ} = -0.25 \text{ V}$

$$Zn^{2+} + 2e^{-} \rightarrow Zn$$
; $E^{\circ} = -0.77 \text{ V}$

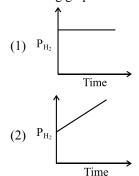
The emf of cell formed by combining the two

half cells is $\frac{y}{50}$ volt, the value of y will be

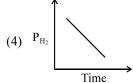
67. Electrolysis can be used to determine atomic masses. A current of 0.550 A deposits 0.55 g of a certain metal in 100 minutes. If the atomic mass of the metal (n factor = 3) is $\frac{Z}{4}$, the value

of z is (nearest integer)

- 68. How many minutes will it take to plate out 5.0 g of Cr from a $Cr_2(SO_4)_3$ solution using a current of 15 A? (Atomic weight: Cr = 52.0) (nearest integer)
- **69.** How many coulomb of electricity are consumed when 100 mA current is passed through a solution of AgNO₃ for 30 minutes during an electrolysis experiment:
- **70.** A certain current liberated 0.504 g of hydrogen in 2 hours. How many grams of copper can be liberated by the same current flowing for the same time in copper sulphate solution (nearest integer)
- 71. The ionization constant of a weak electrolyte is 25×10^{-6} while the equivalent conductance of its 0.01 M solution is 19.6 S cm² eq⁻¹. The equivalent conductance of the electrolyte at infinite dilution (in S cm² eq⁻¹) will be


- 72. Resistance of 0.1 M KCl solution in a conductance cell is 300 ohm and conductivity is 0.013 Scm⁻¹. The value of cell constant is $\frac{x}{10}$ cm⁻¹, the value of x is
- 73. The equivalent conductivity of 0.1 N CH₃COOH at 25°C is 80 and at infinite dilution 400. The degree of dissociation of CH₃COOH is x %, the value of x is
- 74. The weight of silver (in gm) (eq. wt = 108) displaced by that quantity of current which displaced 5600 ml. of hydrogen at STP is:
- 75. When molten lithium chloride (LiCl) is electrolyzed, lithium metal is formed at the cathode. If current efficiency is 75%. If $\frac{x}{1000}$ grams of lithium are liberated when 1930 C of charge is passed through the cell the value of x is (Atomic weight: Li = 7)




CHEMICAL KINETICS

Single Option Correct Type Questions (01 to 60)

- 1. A reaction, which is second order, has a rate constant of 0.002 L mol⁻¹ s⁻¹. If the initial conc. of the reactant is 0.2 M. how long will it take for the concentration to become 0.0400 M?
 - (1) 1000 s
- (2) 400 s
- (3) 200 s
- (4) 10,000 s
- 2. Decomposition of HI (g) on gold surface is zero order reaction. Initially, few moles of H₂ are present in the container then which of the following graph is correct?

3. Match the order of reaction (in List I) with its property (in List II) and select the correct answer using the code given below the lists:

List	t- I (Order)]	List- II (Property)
Ι	Zero	P	Half-life $\propto \frac{1}{a^2}$
II	First	Q	Half-life $\propto \frac{1}{a}$
III	Second	R	Half-life is doubled on doubling the initial concentration
IV	Third	S	50% reaction takes same time even if concentration is halved or doubled.

- (1) I-S; II-R; III-Q; IV-P
- (2) I-R; II-S; III-Q; IV-P
- (3) I-Q; II-S; III-P; IV-R
- (4) I-R; II-Q; III-S; IV-P
- **4.** Half-lives of decomposition of NH₃ on the surface of a catalyst for different initial pressure are given as:

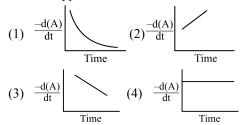
P(torr)	200	300	500
$t_{1/2}$	10	15	25

The order of the reaction is-

(1) 2

(2) 0

(3) 1


(4) 0.5

5. Variation of concentration of the product (X) with time in the reaction $A \rightarrow X$ is shown in graph (I).

Hence, the graph between $-\frac{d(A)}{dt}$ and time will

be of the type:

- **6.** At 227°C, the presence of catalyst causes the activation energy of a reaction to decrease by 4.606 K cal. The rate of the reaction will be increased by:
 - (1) 2 times
- (2) 10 times
- (3) 100 times
- (4) 1000 times
- 7. Gaseous cyclobutane isomerizes to butadiene following first order process which has half-life of 150.5 minute at certain temperature. How long will take for the process to occur to the extent of 40% at the same temperature?
 - (1) 103 minutes
- (2) 121 minutes
- (3) 111 minutes
- (4) 115 minutes
- 8. The rate constant for the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ is 3.0×10^{-4} s⁻¹. If start is made with 1.0 mol L⁻¹ of N_2O_5 , calculate the rate of formation of NO_2 at the moment of the reaction when concentration of O_2 is 0.1 mol L⁻¹.
 - (1) $2.7 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$
 - (2) $2.4 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
 - (3) $4.8 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
 - (4) $9.6 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
- 9. The rate of a hetrogeneous reaction (as iron (solid) and oxygen gas) does not depend on:
 - (1) Concentration of reactants

- (2) Surface area of reactants
- (3) Pressure of reactant gases
- (4) Potential energy of reactant
- 10. For the reaction $4A + B \rightarrow 2C + 2D$

The incorrect statement is:

- (1) The rate of disappearance of B is one fourth the rate of disappearance of A
- (2) The rate of appearance of C is half the rate of disappearance of B
- (3) The rate of formation of D is half the rate of consumption of A
- (4) The rates of formation of C and D are equal
- 11. The decomposition of azo methane, at certain temperature according to the equation

 $(CH_3)_2N_2 \rightarrow C_2H_6 + N_2$ is a first order reaction. After 40 minutes from the start, the total pressure developed is found to be 350 mm Hg in place of initial pressure 200 mm Hg of azo methane. The value of rate constant k is -

- (1) $2.88 \times 10^{-4} \text{ sec}^{-1}$
- (2) $1.25 \times 10^{-4} \text{sec}^{-1}$
- (3) $3.45 \times 10^{-4} \text{ sec}^{-1}$
- (4) None of these
- **12.** The decomposition of N₂O into N₂ & O₂ in presence of gaseous argon follow second order kinetics with

k = (5.0 \times 10^{11} L mol $^{-1}$ s $^{-1})$ e $^{-\frac{41570\,K}{T}}$ (K stands for Kelvin units). The energy of activation of the reaction is

- (1) $5.0 \times 10^{11} \,\mathrm{J}$
- (2) 41570 J
- (3) 5000 J
- (4) 345446.70 J
- **13.** Match List I with List II and select the correct answer using the code given below the lists:

Li	List- I (Graph)		- II (Slope)
I	C Vs t (abscissa) for zero order		Unity
II	log C Vs t (abscissa) for first order	Q	Zero
III	$\left(\frac{-dc}{dt}\right)$ Vs c for zero order	R	-k

IV	$\ln\left(\frac{-dc}{dt}\right)Vs$ $\ell nc \text{ for first}$ $order$	S	$-\frac{k}{2.303}$
----	--	---	--------------------

- (1) I-R; II-S; III-Q; IV-P
- (2) I-S; II-P; III-Q; IV-R
- (3) I-Q; II-S; III-P; IV-R
- (4) I-R; II-Q; III-P; IV-S
- **14.** Match List I with List II and select the correct answer using the code given below the lists:

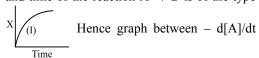
	List- I	L	List- II	
I	If the activation energy is 65 kJ then how much time faster a reaction proceed at 25°C than at 0°C	P	2	
II	Rate constant of a first - order reaction is 0.0693 min ⁻¹ . If we start with 20 mol L ⁻¹ , it is reduced to 2.5 mol L ⁻¹ in how many minutes	Q	Zero	
III	Half - lives of first - order and zero order reactions are same. Ratio of rates at the start of reaction is how many times of 0.693. Assume initial concentration to be same for the both.	R	11	
IV	the half-life periods are given,	S	30	

- (1) I-R; II-S; III-P; IV-Q
- (2) I-S ; II-R ; III-P ; IV-Q
- (3) I-R; II-P; III-S; IV-Q
- (4) I-R; II-S; III-Q; IV-P

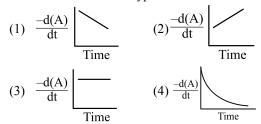
15. Match the following for a 1st order reaction $A \rightarrow$ products with time on the x axis and select the correct answer using the code given below:

	List- I		List- II
I	[A] v/s time	P	
II	$\frac{-d[A]}{dt} v/s [A]$	Q	
III	$\frac{-d[A]}{dt}$ v/s time	R	
IV	log [A] v/s time	S	

- (1) I-R; II-Q; III-R; IV-P
- (2) I-R; II-R; III-Q; IV-P
- (3) I-Q; II-R; III-R; IV-P
- (4) I-R; II-Q; III-P; IV-R
- 16. For the reaction, $2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$ the rate expression can be written in the following ways:


$$\{dt[N_2]/dt\} = k_1[NO][H_2]; \{d[H_2O]/dt\}$$

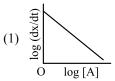
=
$$k[NO][H_2]$$
; $\{-d[NO]/dt\} = k'_1[NO][H_2]$; $\{-d[H_2]/dt\} = k''_1[NO][H_2]$

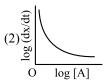

The relationship between k, k_1 , k'_1 and k''_1 . is:

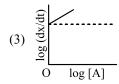
- (1) $k = k_1 = k'_1 = k''_1$
- (2) $k = 2k_1 = k'_1 = k''_1$
- (3) $k = 2k'_1 = k_1 = k''_1$
- (4) $k = k_1 = k'_1 = 2 k''_1$
- 17. For a first order reaction, the plot of 't' against log C gives a straight line with slope equal to:
 - (1) (k/2.303)
- (2) (-k/2.303)
- (3) $(\ln k / 2.303)$
- (4) k.

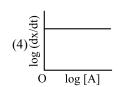
18. Graph between concentration of the product and time of the reaction $A \rightarrow B$ is of the type

and time will be of the type:


- 19. In the case of zero order reaction, the ratio of time required for 75% completion to 50% completion is:
 - (1) ln 2


(2) 2


(3) 1.5


- (4) None
- **20.** A \rightarrow Product and $\left(\frac{dx}{dt}\right) = k[A]^2$. If $\log\left(\frac{dx}{dt}\right)$

is plotted against log [A], then graph is of the type:

Time	0	T	8
Partial pressure of A	P_0	Pt	_

Calculate the expression of rate constant.

(1)
$$k = \frac{1}{t} \ln \left(\frac{P_0}{P_t} \right)$$
 (2) $k = \frac{1}{t} \ln \left(\frac{P_t}{P_0} \right)$

(3)
$$k = \frac{1}{t} \ln \left(\frac{2P_0}{P_t} \right)$$
 (4) $k = \frac{1}{t} \ln \left(\frac{P_t}{2P_0} \right)$

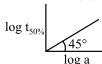
- **22.** For a zero order reaction, which of the following statement is false:
 - (1) The rate is independent of the temperature of the reaction.
 - (2) The rate is independent of the concentration of the reactants.
 - (3) The half-life depends on the concentration of the reactants.
 - (4) The rate constant has the unit mole litre $^{-1}$ sec $^{-1}$.
- **23.** For producing the effective collisions, the colliding molecules must posses:
 - (1) A certain minimum amount of energy
 - (2) Energy equal to or greater than threshold energy
 - (3) Proper orientation
 - (4) Threshold energy as well as proper orientation of collision.
- **24.** The reaction of hydrogen, and iodine monochloride is represented by the equation:

$$H_2(g) + 2ICl(g) \longrightarrow 2HCl(g) + I_2(g)$$

This reaction is first-order in $H_2(g)$ and also first-order in ICl(g). Which of these proposed mechanism can be consistent with the given information about this reaction?

Mechanism I:

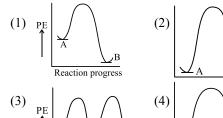
$$H_2(g) + 2ICl(g) \longrightarrow 2HCl(g) + I_2(g)$$

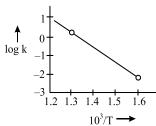

Mechanism II:

$$H_2(g) + ICl(g) \xrightarrow{Slow} HCl(g) + HI(g)$$

$$HI(g) + ICl(g) \xrightarrow{fast} HCl(g) + I_2(g)$$

- (1) I only
- (2) II only
- (3) Both I and II
- (4) Neither I nor II


25. What will be the order of reaction and rate constant for a chemical change having $\log t_{50\%}$ vs \log concentration of (A) curves as:


- (1) 0, 1/2
- (2) 1, 1

(3) 2, 2

- (4) 3, 1
- 26. The rate constant K_1 of a reaction is found to be double that of rate constant K_2 of another reaction. The relationship between corresponding activation energies of the two reactions at same temperature (E_1 and E_2) can be represented as:
 - (1) $E_1 > E_2$
- (2) $E_1 < E_2$
- (3) $E_1 = E_2$
- (4) None of these
- **27.** For a reaction A \rightarrow B, $E_a = 10 \text{ kJ mol}^{-1}$, $\Delta H = 5 \text{ kJ mol}^{-1}$. Thus, potential energy profile for this reaction is:

28. For the decomposition of HI the following logarithmic plot is shown: [R = 1.98 cal/mol-K]

The activation energy of the reaction is about

- (1) 45600 cal
- (2) 13500 cal
- (3) 24600 cal
- (4) 32300 cal

29. A hypothetical reaction $X_2 + Y_2 \longrightarrow 2XY$ follows the mechanism given below.

$$X_2 \longrightarrow X + X$$

$$X + Y_2 \longrightarrow XY + Y$$
 [Slow]

$$X + Y \longrightarrow XY$$
 [Fast]

The order of overall reaction is

(1) 2

(2) 1

(3) 1.5

- (4) Zero
- **30.** A radioactive element has a half-life of one day. After three days, the amount of the element left will be:
 - (1) 1/2 of the original amount
 - (2) 1/4 of the original amount
 - (3) 1/8 of the original amount
 - (4) 1/16 of the original amount
- **31. Assertion:** The rate of reaction whether exothermic or endothermic, increases with temperature.

Reason: The rate of reaction = K [reactant]ⁿ and K increases with temperature.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **32. Assertion:** A catalyst always lowers the energy of activation.

Reason: The positive catalyst-reactant interaction forms activated adsorbed complex and adsorption is always exothermic.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect

33. **Assertion:** The elementary reaction is single step reaction and does not possess mechanism.

> Reason: An elementary reaction has order of reaction and molecularity same.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is
- (4) Both are assertion and reason are incorrect
- 34. Units of rate constant of first and zero order reactions in terms of molarity M unit are respectively
 - (1) \sec^{-1} , M \sec^{-1}
- (2) sec^{-1} , M
- (3) $M \sec^{-1} . \sec^{-1}$ (4) $M . \sec^{-1}$
- The differential rate law for the reaction $H_2 + I_2$ 35. \rightarrow 2HI is:

(1)
$$-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$$

(2)
$$\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2} \frac{d[HI]}{dt}$$

(3)
$$\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$$

(4)
$$-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} = +\frac{d[HI]}{dt}$$

- 36. The rate law for a reaction between the substances A and B is given by rate = $k [A]^n$ [B]^m. On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as
 - $(1) \quad \frac{1}{2^{m+n}}$
- (2) (m + n)
- (3) (n-m)
- $(4) 2^{(n-m)}$
- For the reaction system: $2NO_{(g)} + O_{2(g)} \longrightarrow$ 37. $2NO_{2(g)}$, volume is suddenly reduced to half its value by increasing the pressure on it. If the

reaction is of first order with respect to O_2 and second order with respect to NO, the rate of reaction will:

- (1) Diminish to one-fourth of its initial value
- (2) Diminish to one-eighth of its initial value
- (3) Increase to eight times of its initial value
- (4) Increase to four times of its initial value.
- In the respect of the equation $k = Ae^{-Ea/RT}$ in 38. chemical kinetics, which one of the following statements is correct:
 - (1) k is equilibrium constant
 - (2) A is adsorption factor
 - (3) E_a is energy of activation
 - (4) R is Rydberg constant.
- 39. The rate equation for the reaction 2A + B \longrightarrow C is found to be: rate = k[A] [B]. The correct statement in relation to this reaction is
 - (1) Unit of k must be sec⁻¹
 - (2) $t_{1/2}$ is a constant
 - (3) Rate of formation of C is twice the rate of disappearance of A
 - (4) Value of k is independent of initial concentrations of A and B.
- 40. The half - life of a radioisotope is four hours. If the initial mass of the isotope was 200 g, the mass remaining after 24 hours undecayed is:
 - (1) 1.042 g
- (2) 2.084 g
- (3) 3.125 g
- (4) 4.167 g.
- 41. Consider an endothermic reaction $X \longrightarrow Y$ with the activation energies E_b and E_f for the backward and forward reaction, respectively. In general
 - (1) $E_b < E_f$
- (2) $\Delta H = \Delta U$
- (3) $\Delta H < \Delta U$
- (4) $\Delta H > \Delta U$
- 42. A reaction involving two different reactants can never be:
 - (1) Unimolecular reaction
 - (2) First order reaction
 - (3) Second order reaction
 - (4) Bimolecular reaction

- 43. A reaction was found to be second order with respect to the concentration of carbon monoxide. If the concentration of carbon monoxide is doubled, with everything else kept the same, the rate of reaction will
 - (1) Remain unchanged
 - (2) Get tripled
 - (3) Increased by a factor of 4
 - (4) Get doubled
- 44. The half-life period of a first order chemical reaction is 6.93 minutes. Time required for the completion of 99% of the chemical reaction will be $(\log 2 = 0.301)$:
 - (1) 23.03 minutes
 - (2) 46.06 minutes
 - (3) 460.6 minutes
 - (4) 230.3 minutes
- 45. A reactant (A) forms two products:

$$A \xrightarrow{k_1} B$$
, Activation Energy (Ea₁)

$$A \xrightarrow{k_2} C$$
, Activation Energy (Ea₂)

If $Ea_2 = 2 Ea_1$, then k_1 and k_2 are related as:

(1)
$$k_2 = k_1 e^{Ea_1/RT}$$

(2)
$$k_2 = k_1 e^{Ea_2/RT}$$

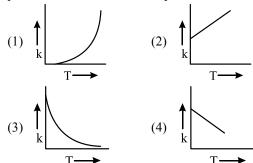
(1)
$$k_2 = k_1 e^{Ea_1/RT}$$
 (2) $k_2 = k_1 e^{Ea_2/RT}$
(3) $k_1 = Ak_2 e^{Ea_1/RT}$ (4) $k_1 = 2k_2 e^{Ea_2/RT}$

(4)
$$k_1 = 2k_2e^{Ea_2/R}$$

- The rate of a reaction doubles when its 46. temperature changes from 300 K to 310 K. Activation energy of such a reaction will be: (R $= 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ and } \log 2 = 0.301)$
 - (1) 53.6 kJ mol^{-1}
- (2) 48.6 kJ mol^{-1}
- (3) 58.5 kJ mol^{-1}
- (4) 60.5 kJ mol^{-1}
- 47. For the non-stoichiometric reaction $2A + B \rightarrow$ C + D, the following kinetic data were obtained in three separate experiments, all at 298 K.

Initial	Initial	Initial rate
Concentration	Concentration	of
(A)	(B)	formation
	` '	of C (mol
		L-S-)
0.1 M	0.1 M	1.2×10^{-3}
0.1 M	0.2 M	1.2×10^{-3}
0.2 M	0.1 M	2.4×10^{-3}

The rate law for the formation of C is:

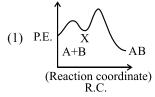

$$(1) \quad \frac{dc}{dt} = k[A][B]$$

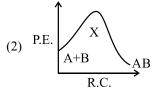
(1)
$$\frac{dc}{dt} = k[A][B]$$
 (2) $\frac{dc}{dt} = k[A]^2[B]$

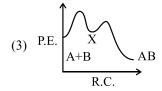
(3)
$$\frac{dc}{dt} = k[A][B]^2$$
 (4) $\frac{dc}{dt} = k[A]$

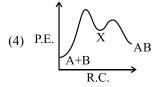
(4)
$$\frac{dc}{dt} = k[A]$$

48. Plots showing the variation of the rate constant (k) with temperature (T) are given below. The plot that follows Arrhenius equation is:

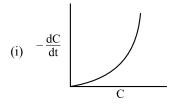

- 49. The reaction $A(g) + 2B(g) \rightarrow C(g)$ is an elementary reaction. In an experiment involving this reaction, the initial partial pressures of A and B are $P_A = 0.40$ atm and P_B = 1.0 atm respectively. When pressure of C becomes 0.3 atm in the reaction the rate of the reaction relative to the initial rate is:
 - (1) $\frac{1}{12}$

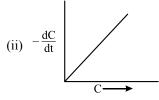

(3) $\frac{1}{25}$

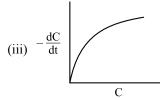

- 50. Which of the following statement is incorrect?
 - (1) Unit of rate of disappearance is Ms⁻¹
 - (2) Unit of rate of reaction is Ms⁻¹
 - (3) Unit of rate constant k is depends on order
 - (4) Unit of k for first order reaction is Ms⁻¹
- Which of the following statement is incorrect? 51.
 - (1) A second order reaction must be a bimolecular elementary reaction
 - (2) A bimolecular elementary reaction must be a second order reaction
 - (3) Zero order reaction must be a complex reaction
 - (4) First order reaction may be complex or elementary reaction


- 52. For an elementary reaction $2A + B \longrightarrow A_2B$ if the volume of vessel is quickly reduced to half of it's original volume then rate of reaction will:
 - (1) Unchange
 - (2) Increase four times
 - (3) Increase eight times
 - (4) Decrease eight times
- 53. In the presence of acid, the initial concentration, of cane-sugar was reduced from 0.2 M to 0.1 M in 5 hr and to 0.05 M in 10 hr. The reaction must be of
 - (1) Zero order
 - (2) First order
 - (3) Second order
 - (4) Fractional order
- **54.** For an exothermic chemical process occurring in two steps as follows
 - (i) $A + B \longrightarrow X$ (slow)
 - (ii) $X \longrightarrow AB$ (fast)

the process of reaction can be best described by:



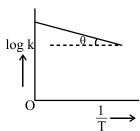




- 55. The temperature coefficient of a reaction is:
 - (1) The rate constant
 - (2) The rate constant at a fixed temperature
 - (3) The ratio of rate constant at two temperature
 - (4) The ratio of rate constant differing by 10°C preferably k₃₀₈/k₂₉₈
- **56.** The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean life (T) and time of decay (t) is given by the value of t =
 - (1) 2 T ln 2
- (2) 4 T ln 2
- (3) $2T^4 \ln 2$
- (4) $\frac{1}{T^2} \ln 2$
- 57. In three different reactions, involving a single reactant in each case, a plot of rate of the reaction on the y-axis, versus concentration of the reactant on the x-axis, yields three different curves shown below.

What are the possible orders of the reactions (i), (ii), (iii)?

- (1) 1, 2, 3
- (2) 2, 1, 1/2
- (3) 0, 1, 2
- (4) 0, 1, 1/2


- **58.** $t_{1/2} = \text{constant}$, confirms that the order of the reaction is one. $a^2 t_{1/2} = \text{constant}$, confirms that the reaction is of:
 - (1) Zero order
 - (2) First order
 - (3) Second order
 - (4) Third order
- 59. If the initial concentration of reactants in certain reaction is doubled, the half-life period of the reaction doubles, the order of a reaction is:
 - (1) Zero
- (2) First
- (3) Second
- (4) Third
- **60.** If rate constant is numerically the same for three reactions of first, second and third order respectively. Which of the following is correct:
 - (1) if [A] = 1 then $r_1 = r_2 = r_3$
 - (2) if [A] < 1 then $r_1 > r_2 > r_3$
 - (3) if [A] > 1 then $r_3 > r_2 > r_1$
 - (4) All

Integer Type Questions (61 to 75)

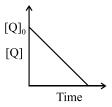
- **61.** How many times faster would a reaction proceeds at 25°C than at 0°C if the activation energy is 65 kJ?
- 62. Two substances A ($t_{1/2} = 5 \text{ min}$) and B ($t_{1/2} = 15 \text{ min}$) are taken in such a way that initially [A] = 4[B]. If t(min) is the time after which both the concentration will be equal, (Assume that reaction is first order) the value of t is (in min.)
- 63. From different sets of data of $t_{1/2}$ at different initial concentration say 'a' for a given reaction, the product $[t_{1/2} \times a]$ is found to be constant. The order of reaction is:
- 64. The rate constant of a first order reaction is $4 \times 10^{-3} \text{ sec}^{-1}$. At a reactant concentration of 0.02 M. the rate of reaction would be is $x \times 10^{-6} \text{ mole/sec}^{-1}$. The value of x is

65. Graph between log k and $\frac{1}{T}$ (k is rate constant in s⁻¹ and T is the temperature in K) is a straight line. As shown in figure if OX = 5 and slope of

the line=
$$-\frac{1}{2.303}$$

then E_a is y cal. The value of y is

- 67. For a given reaction, energy of activation for forward reaction (E_{af}) is 80 kJ.mol⁻¹. $\Delta H = -40$ kJ.mol⁻¹ for the reaction. A catalyst lowers E_{af} to 20 kJ.mol⁻¹. The ratio of energy of activation for reverse reaction before and after addition of catalyst is:
- 68. For the reaction $A + 2B \rightarrow C$, rate is given by $R = k[A][B]^2$ then the order of the reaction is:
- **69.** In a first order reaction, the concentration of the reactant, decreases from 0.8 M to 0.4 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is: (in min.)
- 70. The following mechanism has been proposed for the reaction of NO with Br₂ to form NOBr.
 NO (g) + Br₂(g) NOBr₂(g); NOBr₃(g)


+ NO (g)
$$\longrightarrow$$
 2NOBr (g) (slow step)

If the second step is the rate determining step, the order of the reaction with respect to NO(g) is

- 71. The energies of activation for forward and reverse reactions for $A_2 + B_2 \rightleftharpoons 2AB$ are 180 kJ mol^{-1} and 200 kJ mol^{-1} respectively. The presence of a catalyst lowers the activation energy of both (forward and reverse) reactions by 100 kJ mol^{-1} . If the enthalpy change of the reaction $(A_2 + B_2 \rightleftharpoons 2AB)$ in the presence of catalyst will be (in kJ mol⁻¹) is -x. The value of x is
- 72. A radioactive element gets spilled over the floor of a room. Its half-life period is 30 days. If the initial activity is ten times the permissible value, after how many days will it be safe to enter the room:
- 73. The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the

- reaction increases by about x times. The value of x is
- 74. In the reaction, $P + Q \longrightarrow R + S$

The time taken for 75% reaction of P is twice the time taken for 50% reaction of P. The concentration of Q varies with reaction time as shown in the figure. The overall order of the reaction is:

75. If the rate of the reaction is equal to the rate constant, the order of the reaction is:

THE p-BLOCK ELEMENTS (GROUP 13 TO 18)

Single Option Correct Type Questions (01 to 60)

- 1. There is considerable increase in covalent radius from N to P. However, from Sb to Bi only small increase (of 7 pm) in covalent radius is observed. This is due to:
 - (1) poor shielding by completely filled d- and f-orbitals in Bi.
 - (2) similar electronegativity of Sb and Bi.
 - (3) the Bi being last element of the group.
 - (4) similar densities of Sb and Bi.
- **2.** With respect to protonic acids, which of the following statement is correct?
 - (1) PH₃ is more basic than NH₃
 - (2) PH₃ is less basic than NH₃
 - (3) PH₃ is equally basic as NH₃
 - (4) PH₃ is amphoteric while NH₃ is basic.
- 3. Which of the following can convert acidified $Cr_2O_7^{2-}$ to green?
 - (1) $SO_2 / H_2SO_3 / H_2SO_4$
 - (2) $SO_3 / H_2SO_3 / H_2S$
 - (3) $S_2O_3^{2-}/H_2S/Fe^{2+}$
 - (4) $S_2O_3^{2-}/SO_3/Fe^{3+}$
- **4.** Which of the following is incorrect for the oxides of 16th group elements?
 - (1) Reducing property of their dioxides decreases from SO₂ to TeO₂
 - (2) Basic character of their dioxide increases down the group i.e acidic character decreases down the group.
 - (3) (1) and (2) both
 - (4) None

- 5. The decrease in stability of compounds of higher oxidation state in p-block with increasing atomic number is due to:
 - (1) decrease in bond energy as on going down the group.
 - (2) energy required to unpair ns² electrons is not compensated by the energy released in forming the two additional bonds.
 - (3) both are correct.
 - (4) none is correct.
- **6.** For H_3PO_3 and H_3PO_4 , the correct choice is:
 - (1) H₃PO₃ is stronger acid than H₃PO₄
 - (2) H₃PO₃ is dibasic and reducing.
 - (3) H₃PO₄ is tribasic and reducing
 - (4) (1) and (2) both
- 7. Which of the following is the most basic oxide?
 - (1) SeO₂
- (2) P_2O_3
- (3) Sb₂O₃
- (4) Bi₂O₃
- **8.** In group 15, the melting points of the elements:
 - (1) increase regularly on moving down the group.
 - (2) decrease regularly on moving down the group.
 - (3) first decrease upto As and then increase to Bi.
 - (4) first increase from N to As and then decrease to Bi.
- **9.** The hydrides of group 15 elements act as :
 - (1) lewis acids
- (2) lewis bases
- (3) both
- (4) none

- **10.** Single N-N bond is weaker than the single P-P bond. This is because of:
 - (1) larger N-N bond length in comparison to P-P bond length .
 - (2) high interelectronic repulsion of the nonbonding electrons, owing to the small N-N bond length in comparison to that in P-P single bond.
 - (3) higher electronegativity of N in comparison to P.
 - (4) smaller atomic size of N as compared to that of P.
- 11. The basic strength of the hydrides of group 15 elements:
 - (1) decreases on moving down the group
 - (2) increases on moving down the group
 - (3) first decreases upto AsH₃ and then increases
 - (4) first increases upto AsH₃ and then decreases
- **12.** What causes nitrogen to be chemically inert?
 - (1) Multiple bond formation in the molecule
 - (2) Absence of bond polarity
 - (3) Short internuclear distance
 - (4) High bond energy
- **13.** Which of the following oxides is the most acidic?
 - (1) N_2O_5
- (2) P_2O_5
- (3) As₂O₅
- (4) Sb₂O₅
- **14.** Which of the following oxides is amphoteric in nature?
 - (1) N_2O_3
- $(2) P_4O_6$
- (3) Sb_4O_6
- (4) Bi₂O₃
- 15. In case of nitrogen, NCl₃ is possible but not NCl₅ while in case of phosphorous, PCl₃ as well as PCl₅ are possible. It is due to
 - (1) Availability of vacant d-orbital in P but not in N
 - (2) Lower electronegativity of P than N
 - (3) Lower tendency of H bond formation in P than N

- (4) Occurrence of P in solid while N in gaseous state at room temperature.
- **16.** Which of the following acts as semi metal?
 - (1) S (3) Po

- (2) Te (4) O
- 17. Which element of chalcogens has maximum tendency to show catenation?
 - (1) Oxygen
- (2) Selenium
- (3) Sulphur
- (4) Tellurium
- **18.** Which of the following compounds is the strongest reducing agent?
 - (1) H₂O
- (2) H_2S
- (3) H₂Se
- (4) H₂Te
- 19. Which one of the following statements is false?
 - (1) Because of the compact nature of oxygen atom, it has less negative electron gain enthalpy than sulphur.
 - (2) Next to fluorine, oxygen has the highest electronegativity value amongst the elements.
 - (3) There is large difference in the melting and boiling points of oxygen and sulphur because oxygen exists as diatomic molecules (O₂) where as sulphur exists as polyatomic molecules (S₈).
 - (4) None
- **20.** The correct order of the thermal stability of the following hydrides is:

H ₂ O	H ₂ Se	H ₂ S	H_2Te
(I)	(II)	(III)	(IV)

- (1) I > II > III > IV
- (2) I > III > II > IV
- (3) III > I > IV > II
- (4) IV > III > II > I
- **21.** Which of the following hydride is most acidic?
 - (1) H₂Te
- (2) H₂Se
- (3) H₂O
- (4) H₂S
- 22. H_2S is far more volatile than water because
 - (1) sulphur atom is more electronegative than oxygen atom.
 - (2) oxygen being more electronegative than sulphur forms hydrogen bond.
 - (3) H₂O has bond angle of nearly 105°.
 - (4) hydrogen atom is loosely bonded with sulphur.

- **23.** It is possible to obtain oxygen from air by fractional distillation because
 - (1) Oxygen is in a different group of the periodic table from nitrogen
 - (2) Oxygen is more reactive than nitrogen
 - (3) Oxygen has higher b.p. than nitrogen
 - (4) Oxygen has a lower density than nitrogen
- **24.** The boiling points of the following hydrides follow the order
 - (1) $SbH_3 > NH_3 > AsH_3 > PH_3$
 - (2) $NH_3 > PH_3 > AsH_3 > SbH_3$
 - (3) $NH_3 > SbH_3 > AsH_3 > PH_3$
 - (4) $SbH_3 > AsH_3 > NH_3 > PH_3$
- **25. Assertion :** Nitrogen and Oxygen are the main components in the atmosphere but these do not react to form oxides of nitrogen.

Reason: The reaction between nitrogen and oxygen requires high temperature.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **26.** The correct order of acidic strength is :
 - (1) $Cl_2O_7 > SO_3 > P_4O_{10}$
 - (2) $CO_2 > N_2O_5 > SO_3$
 - (3) $Na_2O > MgO > Al_2O_3$
 - (4) $K_2O > CaO > MgO$
- 27. Amongst H₂O, H₂S, H₂Se and H₂Te the one with highest boiling point is:
 - (1) H₂O because of H-bonding.
 - (2) H₂Te because of higher molecular weight.
 - (3) H₂S because of H-bonding.
 - (4) H₂Se because of lower molecular weight
- 28. Nitrogen and oxygen exist as diatomic but their congeners are P_4 and S_8 respectively because :
 - (1) phosphorus and sulphur are solids.

- (2) phosphorus and sulphur catenate due to the existence of d-orbitals and form stainless structures.
- (3) phosphorus and sulphur polymerise as soon as they are formed.
- (4) catenation tendency of P and S is stronger because of the high P - P and S - S bond energies as compared to N - N and O - O bond energies.
- **29.** Which of the following is correct statement?
 - (1) F_2 has higher dissociation energy than Cl_2
 - (2) F has higher electron affinity than Cl
 - (3) HF is stronger acid than HCl
 - (4) Boiling point increases down the group in halogens
- 30. Which is the correct sequence in the following properties. For the correct order mark (T) and for the incorrect order mark (F):
 - (a) Acidity order: $SiF_4 < SiCl_4 < SiBr_4 < SiI_4$
 - (b) Melting point: $NH_3 > SbH_3 > AsH_3 > PH_3$
 - (c) Boiling point: $NH_3 > SbH_3 > AsH_3 > PH_3$
 - (d) Dipole moment order: NH₃ > SbH₃ > AsH₃ > PH₃
 - (1) FTFF
- (2) TFTF
- (3) FFTT
- (4) FFTF
- **31.** Match List I with List II and select the correct answer using the codes given below the lists:

	0	0			
List-I	List II				
a. BBr_3	i. Dimer				
b. Tl_2O	ii. Trigonal planar				
c. B(OH) ₃	iii. Basic				
d. AlCl ₃	iv. Monobasic acid				
Code:					
a	b	c	d		
(1) i	ii	iii	iv		
(2) ii	iii	iv	i		
(3) iv	iii	i	ii		
(4) iii	iv	ii	iii		

32. Match List I with List II and select the correct answer using the codes given below the lists:

List II List I a. (SiH₂)₂N i. 3 centre-2-electron bond ii. sp₃-hybridization b. BF₃ c. SiO₂ iii. $p\pi$ - $p\pi$ bond iv. $p\pi$ - $d\pi$ bond d. B_2H_6 Code: b d a c (1) iv ii iii (2) ii iii iv (3) i ii iii iv (4) iv iii ii I

- **33.** The halogens are :
 - (1) transition elements
 - (2) inner-transition elements
 - (3) noble elements
 - (4) representative elements
- **34.** All halogens are coloured. This is due to :
 - (1) Large negative value of electron gain enthalpy.
 - (2) Absorption of radiations in visible region.
 - (3) Large electronegativity and higher ionization enthalpy.
 - (4) Absorption of radiations in ultra-violet region.
- **35.** The order of negative electron gain enthalpy of halogens is :
 - (1) F > Cl > Br > I
 - (2) Cl > Br > F > I
 - (3) Cl > F > Br > I
 - (4) I > Br > Cl > F
- **36.** The halogen-halogen bond length is longest for:
 - (1) fluorine
- (2) chlorine
- (3) bromine
- (4) iodine
- **37.** Which statement is correct about halogens?
 - (1) They are all diatomic and form univalent ions

- (2) They are all capable of exhibiting several oxidation states
- (3) They are all diatomic and form divalent ions
- (4) They can mutually displace each other from the solution of their compounds with metals
- **38.** Oxidising action increases in the following order:
 - (1) Cl < Br < I < F
- (2) C1 < I < Br < F
- (3) I < F < Cl < Br
- (4) I < Br < Cl < F
- **39.** Which of the following hydrogen halides is most volatile?
 - (1) HCl
- (2) HF

(3) HI

- (4) HBr
- **40.** The strongest reducing agent is:
 - (1) F^{-}

(2) Cl⁻

(3) Br⁻

- (4) I⁻
- **41.** The common oxidation states exhibited by the halogens are
 - (1) +2, +4, +6
 - (2) -1, +1, +3, +5, +7
 - (3) +1, +2, +3
 - (4) +1 to +7
- **42.** Fluorine does not show positive oxidation states due to the absence of:
 - (1) d-orbitals
- (2) s-orbitals
- (3) p-orbitals
- (4) f-orbitals
- **43.** Fluorine is a stronger oxidising agent than chlorine in aqueous solution. This is attributed to many factors except:
 - (1) heat of dissociation
 - (2) electron affinity
 - (3) ionization potential
 - (4) heat of hydration
- **44.** Which of the following has highest bond strength:
 - (1) HI

(2) HCl

(3) HF

(4) HBr

- **45.** The formation of O₂⁺ [PtF₆]⁻ is the basis for the formation of xenon fluorides. This is because:
 - (1) O₂ and Xe have comparable sizes.
 - (2) both O_2 and Xe are gases.
 - (3) O₂ and Xe have comparable ionisation energies.
 - (4) O₂ and Xe have comparable electronegativities.
- **46.** Among noble gases (from He to Xe) only xenon reacts with fluorine to form stable fluorides because xenon:
 - (1) has the largest size.
 - (2) has the lowest ionization enthalpy.
 - (3) has the highest heat of vaporization.
 - (4) is the most readily available noble gas.
- **47.** Which of the noble gas has highest polarizability?
 - (1) He

(2) Ar

(3) Kr

- (4) Xe
- **48.** Which of the following is weakest oxidising agent?
 - (1) F_2

(2) Cl₂

(3) Br₂

- (4) I₂
- **49.** Which of the following orders is not correct with respect to the property indicated against each?
 - (1) $F < Cl < Br < I \longrightarrow covalent radius$
 - (2) $F^- > Cl^- > Br > I^- \longrightarrow enthalpy of hydration$
 - (3) $F_2 > Cl_2 > Br_2 > I_2 \longrightarrow$ bond dissociation enthalpy
 - (4) $F_2 < Cl_2 < Br_2 < I_2 \longrightarrow X-X$ bond length (pm)
- **50.** Which of the following statements is false :
 - (1) Acidic Strength of oxyacids : HClO₄ > HClO₃ > HClO₂ > HClO
 - (2) Acidic Strength of oxyacids : HClO₄ > HBrO₄ > HIO₄
 - (3) Number of p π -p π bonds : HClO₄ > HClO₃ > HClO₂ > HClO

- (4) Percentage s-character of central atom : $HClO_4 > HClO_3 > HClO_2 > HClO$
- **51.** The set with correct order of acidity is:
 - (1) HClO < HClO₂ < HClO₃ < HClO₄
 - (2) HClO₄ < HClO₃ < HClO₂ < HClO
 - (3) HClO < HClO₄ < HClO₃ < HClO₂
 - (4) $HClO_4 < HClO_2 < HClO_3 < HClO$
- **52.** Which of the following element is a metalloid?
 - (1) Bi

(2) Sn

(3) Ge

- (4) C
- 53. Among following species which of them have maximum Z_{eff}
 - (1) Sn
 - (2) Sn^{4+}
 - (3) In
 - (4) In⁺
- **54.** Increasing order of electronegativity is:
 - (1) Bi < P < S < C1
 - (2) P < Bi < S < C1
 - (3) C > F > N > O
 - (4) F < O < N < C
- **55.** Which of the following does not exists:
 - (1) TlI₃(Tl⁺³)
 - (2) PbF₄
 - (3) Both (1) and (2)
 - (4) None of these
- **56.** The increasing order of the first ionization enthalpies of the elements B, P, S and F (lowest first) is:
 - (1) F < S < P < B
 - (2) P < S < B < F
 - (3) B < P < S < F
 - (4) B < S < P < F
- 57. The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence.
 - (1) $SiX_2 < GeX_2 < SnX_2 < PbX_2$
 - (2) $PbX_2 < SnX_2 < GeX_2 < SiX_2$
 - (3) $GeX_2 < SiX_2 < SnX_2 < PbX_2$
 - (4) $SiX_2 < GeX_2 < PbX_2 < SnX_2$

- **58.** The following statements concern elements in the periodic table. Which of the following is true?
 - (1) The Group 13 elements are all metals.
 - (2) All the elements in Group 17 are gases.
 - (3) In general, elements of Group 16 have lower first ionization enthalpy values compared to those of Group 15 in the corresponding periods.
 - (4) For Group 15 elements, the stability of +5 oxidation state increases down the group.
- **59.** Assertion : F atom has a less negative electron gain enthalpy than Cl atom.

Reason: Additional electrons are repelled more effectively by 3p electrons in Cl atom than by 2p electrons in F atom.

- (1) Both Assertion and Reason are true, and Reason is the correct explanation of Assertion.
- (2) Both Assertion and Reason are true, but Reason is not correct explanation of Assertion.
- (3) Assertion is true but Reason is false.
- (4) Assertion is false but Reason is true.
- **60.** Statement-1 : Pb⁴⁺ compounds are stronger oxidizing agents than Sn⁴⁺ compounds

Statement-2: The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect'.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

Integer Type Questions (61 to 75)

- 61. 1 mol each of H₃PO₂, H₃PO₃ and H₃PO₄ will neutralise x mole of NaOH, y mol of Ca(OH)₂ and z mole of Al(OH)₃ (assuming all as strong electrolytes) respectively. And the value of x + y + z
- **62.** Amongst the following oxo-acids of phosphorus, how many of them are dibasic in nature?

H₃PO₂, H₃PO₃, H₃PO₄, H₄P₂O₅, H₄P₂O₇

- 63. How many of the following reactions do not depict the oxidising behaviour of H₂SO₄?
 - (i) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl$
 - (ii) $2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$
 - (iii) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$
 - (iv) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$
 - (v) $Al + H_2SO_4 \rightarrow Al_2 (SO_4)_3 + H_2$
- **64.** How many of the following statements are correct for the group 15th elements?
 - (i) Metallic character increases down the group with decrease in ionisation enthalpy and increase in atomic size.
 - (ii) The stability of +5 oxidation state decreases and that of +3 state increases down the group on account of inert pair effect.
 - (iii) The tendency to exhibit –3 oxidation state decreases down the group due to increase in size and metallic character.
 - (iv) The Ionisation energy of group-15 elements is less than that of group 14 elements in the corresponding period.
- **65.** How many of the following statements are correct for group 16th elements?
 - (i) Oxygen is a gas while other elements exist as solids.
 - (ii) Sulphur exists as staggered 8-atom rings.
 - (iii) Density in solid state decreases from oxygen to tellurium.
 - (iv) First ionisation energy of sulphur is lower than that of selenium.

- **66.** How many of the following statement are wrong?
 - (i) The stability of hydrides increase from NH₃ to BiH₃ in group 15 of the periodic table:
 - (ii) Nitrogen cannot form $d\pi$ -p π bond.
 - (iii) Single N N bond is weaker than the single P P bond.
 - (iv) N₂O₄ has two resonating structure
- **67.** Which of the following is true about helium?
 - (i) It has the lowest boiling point.
 - (ii) It has the highest first ionization energy.
 - (iii) It can diffuse through rubber and plastic material.
 - (iv) It can form clathrate compounds.
 - (v) If is non-inflammable and light-gas.
 - (vi) It is used in gas-cooled nuclear reactors.
- **68.** Which of the following orders is in accordance with the property stated against it?
 - (i) $F_2 > Cl_2 > Br_2 > I_2$; bond dissociation energy
 - (ii) $F_2 > Cl_2 > Br_2 > I_2$; oxidising power
 - (iii) HI > HBr > HCl > HF; acidic property in water
 - (iv) $F_2 > Cl_2 > Br_2 > I_2$; electronegativity
 - (v) B < Ga < Al < In < Tl, covalent radius
 - (vi) B > Tl > Ga > Al > In; 1st ionisation energy
- **69.** Consider following properties of the noble gases.
 - They readily form compounds which are colourless.
 - (ii) They generally do not form ionic compounds.
 - (iii) Xenon has variable oxidation states in its compounds.
 - (iv) the smaller He and Ne do not form clathrate compounds.

Find the number of correct properties.

- **70.** How many of the following are correct orders of stability:
 - (i) $Tl^{3+} > Bi^{3+}$
- (ii) $PbO_2 \le PbO$

- (iii) BiI₅ < BiF₅
- (iv) $Sn^{2+} = Ge^{2+}$
- (v) $Bi^{+3} > Bi^{+5}$
- (vi) $In^{+1} > Tl^{+1}$
- (vii) $In^{+3} > Tl^{+3}$
- **71.** How many of the following oxides of N are neutral?
 - (i) N_2O_3
- (ii) N₂O₅
- (iii) N₂O₄
- (iv) N₂O

- (v) NO
- **72.** What is the atomic number of the inert gas which has abnormal behaviour on liquefaction:
 - (i) Xe

(ii) He

(iii) Ar

- (iv) Kr
- 73. How many of the following statements are correct regarding allotropes of carbon:
 - (a) Graphite is not a good conductor of electricity in perpendicular direction of layers at ordinary temperatures.
 - (b) Coke is the impure form of carbon.
 - (c) Anthracite is the purest form of Carbon.
 - (d) Buckminster fullerene contains 12 five membered rings and 20 six-membered rings.
 - (e) Diamond is a good conductor of Heat.
 - (f) Graphite is diamagnetic in nature.
 - (g) Graphite is thermodynamically more stable than diamond
- **74.** For Boron family (B, Al, Ga, In and Tl)
 - x: Number of elements which are solid at 40°C.
 - y: Period number of element which has greater ionization energy than element just above and below it in periodic table.
 - z: Period number of most abundant element of group 13.

Report your answer x + 2y + 3z

- **75.** Consider a prototypical fullerene, C_{60} .
 - Let, a = Number of 5-membered rings
 - b = Number of 6-membered rings
 - $c = Number of \pi$ -bonds in C_{60}
 - Find the value of (3a 2b + c)

THE d- AND f- BLOCK ELEMENTS & QUALITATIVE ANALYSIS

Single Option Correct Type Questions (01 to 60)

- **1.** Identify the incorrect statement among the following.
 - (1) Among V, Cr, Mn and Fe; Mn is expected to have the highest third ionization enthalpy.
 - (2) Eu(II) acts as a strong reducing agent.
 - (3) The ionic sizes of lanthanoids decrease in general with increasing atomic number.
 - (4) VOCl₂ and FeCl₂ are expected to have the same magnetic moment ('spin only')
- **2.** The basic character of the transition metal monoxide follows the order:

(At. no. :
$$Ti = 22$$
, $V = 23$, $Cr = 24$, $Fe = 26$)

- (1) VO > CrO > TiO > FeO
- (2) CrO > VO > FeO > TiO
- (3) TiO > FeO > VO > CrO
- (4) TiO > VO > CrO > FeO
- **3.** Which of the following factor may be regarded as the main cause of Lanthanide contraction?
 - (1) Poor shielding of one of the 4f-electrons by another in the sub-shell.
 - (2) Effective shielding of one of the 4felectrons by another in the sub-shell.
 - (3) Poorer shielding of 6d electron by 4f electrons.
 - (4) Greater shielding of 5d electron by 4f electron.

4. Match List I with List II and select the correct answer using the code given below the lists:

		_	_	
	List- I			List- II
	I	CuCl ₂ ,	P	Colourless and
		$2H_2O$		diamagnetic
	II	Cu_2Cl_2	Q	Green and
				paramagnetic
	III	CuO	R	Calamine
Ī	IV	ZnCO ₃	S	Black and basic

- (1) I-Q; II-P; III-S; IV-R
- (2) I-S; II-Q; III-R; IV-P
- (3) I-S; II-Q; III-R; IV-P
- (4) I-P; II-Q; III-R; IV-S

5. Match List I with List II and select the correct answer using the code given below the lists:

Li	ist- I (Reaction)	List- II (Process) Photographic	
I	$NH_4Br + AgNO_3$ $\rightarrow AgBr +$ NH_4NO_3	P	Preparation of sensitive film
II	$C_6H_4(OH)_2 +$ $2AgBr \rightarrow 2Ag +$ $C_6H_4O_2 + 2HBr$	Q	Developing of the film
III	$\begin{array}{c} 2\text{Na}_2\text{S}_2\text{O}_3 + \\ \text{AgBr} \rightarrow \text{Na}_3 \\ [\text{Ag}(\text{S}_2\text{O}_3)_2] + \\ 2\text{NaBr} \end{array}$	R	Fixing of the film
IV	$AuCl_3 + 3Ag \rightarrow 3AgCl + Au$	S	Toning Process

- (1) I-P; II-Q; III-R; IV-S
- (2) I-P; II-R; III-Q; IV-S
- (3) I-P; II-S; III-Q; IV-R
- (4) I-Q; II-S; III-P; IV-R

- **6.** Which of the statements is False?
 - (1) In 3d series, there is a regular increase in the first ionisation enthalpy of transition elements from left to right.
 - (2) In 3d series, the negative value of standard electrode potential (E/V) for M^{2+}/M decreases in the order Ti > Mn > Cr > Fe.
 - (3) The decreases in metallic radius coupled with increase in atomic mass results in a general increase in the density of transition elements from Ti to Cu.
 - (4) The higher oxidation state are favoured by the heavier elements (i.e. heavier members) in the groups of d-block.
- 7. Which of the following statements is correct?
 - (1) The lesser number of oxidation states in 3d-series in the beginning of the series is due to the presence of too few electrons to loose or share
 - (2) The lesser number of oxidation states in 3d-series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands
 - (3) (1) and (2) both
 - (4) None is correct
- **8.** Which of the following statement is false?
 - (1) Of the d⁴ species, manganese (III) is strongly reducing while Cr²⁺ is strongly oxidising.
 - (2) Cobalt (II) is stable in aqueous solution but in the presence of complexing reagents it is easily oxidised.
 - (3) The d¹ configuration is very unstable in ions.
 - (4) None of these
- 9. The magnetic moment of 25Mn in ionic state is 3.87 B.M, then Mn is in:
 - (1) +2 state
 - (2) +3 state
 - (3) +4 state
 - (4) +5 state

- 10. When a salt is heated with dilute H₂SO₄ and KMnO₄ solution, the pink colour of KMnO₄ is discharged, the salt is:
 - (1) a sulphite
- (2) a carbonate
- (3) a nitrate
- (4) a bicarbonate
- 11. Which of the following statement is correct?
 - (1) Transition metals and their many compounds act as good catalyst.
 - (2) The enthalpies of atomistation of the transition metals are high.
 - (3) The transition metals generally form interstitial compounds with small atoms like C, B, H etc.
 - (4) All of these
- **12.** The yellow colour of chromates changes to orange on acidification due to formation of:
 - (1) Cr^{3+}

- (2) Cr_2O_3
- (3) $Cr_2O_7^{2-}$
- (4) CrO₄⁻
- 13. $KMnO_4$ is the oxo salt of:
 - (1) MnO₂
- (2) Mn₂O₇
- (3) MnO₃
- (4) Mn₂O₃
- **14.** When SO₂ is passed through acidified K₂Cr₂O₇ solution:
 - (1) The solution turns blue.
 - (2) SO₂ is reduced.
 - (3) Green Cr₂(SO₄)₃ is formed.
 - (4) The solution is decolourised.
- **15.** Among the lanthanoides the one obtained by synthetic method is:
 - (1) Lu

(2) Pm

(3) Pr

- (4) Gd
- **16.** Across the lanthanide series, the basicity of the lanthanoide hydroxides:
 - (1) Increases
 - (2) Decreases
 - (3) First increases and then decreases
 - (4) Does not change
- 17. Lanthanoid and actinides resemble most in:
 - (1) General Electronic configuration
 - (2) Colour
 - (3) Ionization energy
 - (4) Formation of complexes

PARAKRAM JEE MAIN BOOKLET

- **18.** Copper has higher second ionization energy than that of both adjacent elements. This is because of:
 - (1) Smaller size of copper (I) ion.
 - (2) d¹⁰ configuration of copper (I) ion.
 - (3) Higher nuclear charge of copper (I) ion.
 - (4) Larger size of copper (I) ion.
- 19. E^{Θ} values for the couples Cr^{3+}/Cr^{2+} and Mn^{3+}/Mn^{2+} are -0.41 and +1.51 volts respectively. Considering these values select the correct option from the following statements.
 - (1) Cr²⁺ acts as a reducing agent and Mn³⁺ acts as an oxidising agent in their aqueous solutions.
 - (2) Cr^{2+} (aq.) is more stable than Cr^{3+} (aq.).
 - (3) Mn^{3+} (aq.) is more stable than Mn^{2+} (aq).
 - (4) None of these.
- **20.** Which of the following pairs of ions has magnetic moment of 5.93 B.M.?
 - (1) Mn^{2+} , Fe^{3+}
- (2) Mn^{2+} , Cr^{3+}
- (3) Fe^{2+} , Co^{3+}
- (4) None
- **21.** Compound that is both paramagnetic and coloured is:
 - (1) $K_2Cr_2O_7$
- (2) (NH₄)₂ [TiCl₆]
- (3) VOSO₄
- (4) $K_3[Cu(CN)_4]$
- **22.** Which one of the following characteristics of the transition metals is associated with their catalytic activity?
 - (1) Colour of hydrated ions.
 - (2) Variable oxidation states.
 - (3) High enthalpy of atomization.
 - (4) Paramagnetic behaviour.
- 23. When hydrogen peroxide is added to acidified potassium dichromate, a blue colour is produced due to formation of:
 - (1) CrO₃
- (2) Cr_2O_3
- (3) CrO₅
- (4) Cr_4^{2-}

- **24.** Which of the following statements is not correct?
 - (1) La(OH)₃ is less basic than Lu(OH)₃
 - (2) In lanthanide series ionic radius of Ln³⁺ ions decreases
 - (3) La is actually an element of transition series rather than lanthanide series
 - (4) Atomic radii of Zr and Hf are same because of lanthanide contraction
- **25. Assertion:** The free gaseous chromium atom has six unpaired electrons

Reason: Half filled orbital has greater stability than fully filled orbital

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is correct, but the reason is incorrect
- (4) Both are assertion and reason are incorrect
- **26. Assertion:** The colour of the solutions of V^{2+} ions and Cr^{3+} ions in water is similar.

Reason: V^{2+} and Cr^{3+} each has three unpaired electrons and both have d^3 configuration.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **27. Assertion:** Copper (I) compounds are unstable in aqueous solutions and undergo disproportionation.

Reason: Cu²⁺ (aq) is stable than Cu⁺ (aq) due to the much more negative enthalpy of hydration of Cu²⁺ (aq.) than Cu⁺, which more than compensates for the second ionization enthalpy of Cu.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **28. Assertion:** The green manganate is paramagnetic but the purple permanganate is diamagnetic in nature.

Reason: MnO_4^{2-} contains one unpaired electron while in MnO_4^- , all electrons are paired.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **29.** Which of the following ions has the maximum magnetic moment?
 - (1) Mn^{2+}
- (2) Fe^{2+}

- (3) Ti^{2+}
- (4) Cr^{2+} .
- **30.** Most common oxidation state for Ce (Cerium) are:
 - (1) +3, +4
- (2) +2, +3
- (3) +2, +4
- (4) +3, +5
- 31. What would happen when a solution of potassium chromate is treated with an excess of dilute HNO₃?
 - (1) $Cr_2O_7^{2-}$ and H_2O are formed
 - (2) CrO_4^{2-} is reduced to +3 state of Cr
 - (3) CrO₄²⁻ is oxidised to +7 state of Cr
 - (4) Cr³⁺ and Cr₂O₇²⁻ are formed

- **32.** The atomic numbers of V,Cr,Mn and Fe are respectively 23,24,25 and 26. Which one of these may be expected to have the highest second ionization enthalpy?
 - (1) Cr

(2) Mn

(3) Fe

- (4) V
- **33.** Which of the following group of transition metals is called coinage metals?
 - (1) Cu, Ag, Au
- (2) Ru, Rh, Pb
- (3) Fe, Co, Ni
- (4) Os. Ir, Pt
- 34. A test tube containing a nitrate and another containing a bromide and MnO₂ are treated with concentrated H₂SO₄. The reddish brown fumes evolved are passed through water. The water will be coloured by:
 - (1) the nitrate
 - (2) the bromide
 - (3) both
 - (4) neither (1) nor (2)
- 35. The radius of La³⁺ (Atomic number of La = 57) is 1.06Å. Which one of the following given values will be closest to the radius of Lu³⁺ (Atomic number of Lu = 71)?
 - (1) 1.60Å
- (2) 1.40Å
- (3) 1.06Å
- (4) 0.85 Å
- **36.** Cerium (Z = 58) is an important member of the lanthanoide. Which of the following statement about cerium is incorrect?
 - (1) The common oxidation state of cerium are +3 and +4.
 - (2) The +3 oxidation state of cerium is more stable than +4 oxidation state.
 - (3) The +4 oxidation state of cerium is not known in solution.
 - (4) Cerium (IV) acts as an oxidizing agent.
- **37.** The lanthanide contraction is responsible for the fact that
 - (1) Zr and Y have about the same radius
 - (2) Zr and Nb have similar oxidation state
 - (3) Zr and Hf have about the same radius
 - (4) Zr and Zn have same oxidation state.

PARAKRAM JEE MAIN BOOKLET

- 38. The "spin-only" magnetic moment [in units of Bohr magneton, (μ_B) of Ni²⁺ in aqueous solution would be (atomic number of Ni = 28)
 - (1) 2.84
- (2) 4.90

(3) 0

- (4) 1.73
- **39.** Identify the incorrect statement among the following.
 - (1) The chemistry of various lanthanoids is very similar.
 - (2) 4f and 5f orbitals are equally shielded.
 - (3) d-block elements show irregular and erratic chemical properties among themselves.
 - (4) La and Lu have partially filled d orbitals and no other partially filled orbitals.
- **40.** The actinoids exhibit more number of oxidation states in general than the lanthanoids. This is because
 - (1) The actinoids are more reactive than the lanthanoids.
 - (2) The 5f orbitals extend farther from the nucleus than the 4f orbitals
 - (3) The 5f orbitals are more buried than the 4f orbitals
 - (4) There is a similarity between 4f and 5f orbitals in their angular part of the wave function
- 41. Larger number of oxidation states are exhibited by the actinoids than those by the lanthanoids, the main reason being.
 - (1) lesser energy difference between 5f and 6d than between 4f and 5d orbitals
 - (2) more energy difference between 5f and 6d than between 4f and 5d orbitals
 - (3) more reactive nature of the actinoids than the lanthanoids
 - (4) 4f orbitals more diffused than the 5f orbitals
- **42.** In context of the lanthanoids, which of the following statement is not correct?

- (1) There is a gradual decrease in the radii of the members with increasing atomic number in the series.
- (2) All the member exhibit +3 oxidation state.
- (3) Because of similar properties, the separation of lanthanoids is not easy.
- (4) Availability of 4f electrons results in the formation of compounds in +4 state for all the members of the series.
- **43.** The outer electron configuration of Lu (Atomic No: 71) is:
 - (1) $4f^3 5d^5 6s^2$
- (2) $4f^8 5d^0 6s^2$
- (3) $4f^4 5d^4 6s^2$
- (4) $4f^{14} 5d^1 6s^2$
- **44.** The colour of $KMnO_4$ is due to:
 - (1) $M \rightarrow L$ charge transfer transition
 - (2) d d transition
 - (3) $L \rightarrow M$ charge transfer transition
 - (4) $\sigma \sigma^*$ transition
- **45.** When MnO₂ is fused with KOH, a coloured compound is formed. The product and its colour is:
 - (1) K₂MnO₄, green
- (2) Mn₂O₃, brown
- (3) Mn₂O₄, black
- (4) KMnO₄, purple
- **46.** The product of oxidation of I⁻ with MnO₄⁻ in alkaline medium is:
 - (1) IO_3^-

 $(2) I_2$

(3) IO⁻

- (4) IO_4^-
- **47.** Among the following, the coloured compound is:
 - (1) CuCl
 - (2) $K_3 [Cu(CN)_4]$
 - (3) CuF₂
 - (4) [Cu(CH₃CN)₄]BF₄
- **48.** Which oxide of manganese is most acidic in nature?
 - (1) MnO
- (2) Mn₂O₇
- (3) Mn₂O₃
- $(4)\ MnO_2.$

- **49.** The pair of the compounds in which both the metals are in the highest possible oxidation state is.
 - (1) $[Fe(CN)_6]^{3-}$, $[Co(CN)_6]^{3-}$
 - (2) CrO_2Cl_2 , MnO_4^- .
 - (3) TiO₂, MnO₂
 - (4) $[Co(CN)_6]^{3-}$, Mn_2O_7 .
- **50. S**₁: The densities of 4d series are high and 5d series values are even higher.

S₂: The magnetic moment of Cr^{2+} ion in aqueous solution is 3.87 BM.

S₃: Interstitial compounds have high melting points, higher than those of pure metals.

S₄: KMnO₄ does not act as an oxidising agent in alkaline medium

- (1) TTFT
- (2) TFTF
- (3) FTFT
- (4) TFFT
- 51. $Fe(CN)_3 + KCN \longrightarrow X \xrightarrow{FeCl_3} Y$ Y is:
 - (1) Brown coloured complex, Inner orbital complex
 - (2) White coloured complex, Inner orbital complex
 - (3) Blue coloured complex, outer orbital complex
 - (4) Blue coloured complex, Inner orbital complex
- 52. KMnO₄ in excess on treatment with concentrated H₂SO₄ forms a compound (X) which decomposes explosively on heating forming (Y). The (X) and (Y) are respectively:
 - (1) Mn_2O_7 , MnO_2
- (2) Mn_2O_7 , Mn_2O_3
- (3) MnSO₄, Mn₂O₃
- (4) Mn₂O₃, MnO₂
- **53.** Which of the following statement is wrong?
 - (1) An acidified solution of K₂Cr₂O₇ liberates iodine from iodides.

- (2) In acidic solution, dichromate ions are converted to chromate ions.
- (3) Ammonium dichromate on heating undergo exothermic decomposition to give Cr₂O₃.
- (4) Potassium dichromate is used as a titrant for Fe^{2+} .
- **54.** Amongst the following metals, which has highest melting point?
 - (1) Ti

(2) Cr

(3) Fe

- (4) Cu
- **55.** When KI is added to acidified solution of sodium nitrite:
 - (1) NO gas is liberated and I₂ is set free
 - (2) N₂ gas is liberated and HI is produced
 - (3) N₂O gas is liberated and I₂ is set free
 - (4) N₂ gas is liberated and HOI is produced
- **56.** Which amongst the following can give the greater number of oxidation states?
 - (1) V

(2) Mn

(3) Cr

- (4) Fe
- 57. Which of the following transition metal ions has the lowest density?
 - (1) Copper
- (2) Nickel
- (3) Scandium
- (4) Zinc
- **58.** How many of the following oxides are amphoteric in nature?
 - (1) V_2O_5 , Cr_2O_3
- (2) V_2O_3 , Cr_2O_3
- (3) Mn₂O₇, CrO₃
- (4) CrO, FeO
- **59.** Among the following transition elements, pick out the element/elements with highest second ionization energy.
 - (i) V (At. no. = 23)
 - (ii) Cr (At. no. = 24)
 - (iii) Mn (At. no. = 25)
 - (iv) Cu (At. no. = 29)
 - (v) Zn (At. no. 30)
 - (1) (iii)

(2) (ii)

(3) (i)

(4) (iv)

60. Match list – I with List – II and select the correct answer using the codes given below the lists

List- I (Metal ion)		List- II [Magnetic moment (BM)]	
Ι	Cr ³⁺	P	$\sqrt{35}$
II	Fe ²⁺	Q	$\sqrt{30}$
III	Ni ²⁺	R	$\sqrt{24}$
IV	Mn ²⁺	S	√15
		T	√8

(1) I-P; II-R; III-T; IV-S

(2) I-Q; II-R; III-T; IV-P

(3) I-S; II-R; III-T; IV-P

(4) I-S; II-T; III-R; IV-P

Integer Type Questions (61 to 75)

- 61. Knowing that the Chemistry of lanthanoids (Ln) is dominated by its +3 oxidation state, how many of the following statement are correct
 - (i) The ionic sizes of Ln (III) decrease in general with increasing atomic number.
 - (ii) Ln (III) compounds are generally colourless.
 - (iii) Ln (III) hydroxides are mainly basic in character
 - (iv) Because of the large size of the Ln (III) ions the bonding in its compounds is predominently ionic in character.
- **62.** How many of the following arrangements represent the correct order of the property stated against it?
 - (i) $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: paramagnetic behaviour
 - (ii) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size
 - (iii) $Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$: stability in aqueous solution
 - (iv) Sc < Ti < Cr < Mn : number of oxidation states

- **63.** How many of the following are correct statements
 - i. Cobalt (III) is more stable in octahedral complexes.
 - ii. Zinc forms coloured ions or complexes
 - iii. Most of the d-block elements and their compounds are ferromagnetic
 - iv. Osmium shows (VIII) oxidation state
 - v. Cobalt (II) is more stable in octahedral complexes.
- **64.** Atomic number of the metal which is king of metals
- **65.** The atomic number of the transition metal where all metal atoms have 3d² 4s² electronic configuration is:
- 66. The smallest atomic number of the transition metal ions, amongst the following in which all metal ions do not have d-electrons?

$$_{24}\text{Cr}^{6+}$$
 ; $_{22}\text{Ti}^{4+}$; $_{25}\text{Mn}^{7+}$

- 67. The number of moles of KMnO₄ that will be needed to react with 10 mole of sulphite ion in acidic medium is:
- **68.** The number of d-electrons retained in Fe^{2+} (At. no. Fe = 26) ions are:
- **69.** A metal ion from the first transition series has a magnetic moment (calculated) of 3.87 B.M. How many unpaired electrons are expected to be present in the ion?
- **70.** Titanium shows magnetic moment of 1.73 BM in its compound. If +x is the oxidation number of Ti in the compound, then x is
- 71. The number of moles of KMnO₄ that will be needed to react completely with 15 mole of ferrous oxalate in acidic solution is:
- **72.** When FeSO₄ is strongly heated, the number of acidic gases produced is:
- **73.** Percentage of gold in 12 carat gold is
- 74. How many transition metal are coinage metal
- **75.** Atomic number of transition element having no electron in s-orbital of outermost shell.

COORDINATION COMPOUNDS

(4) Mg₃N₂

Single Option Correct Type Questions (01 to 60)

- **1.** Which of the following are bidentate monoanion ligands?
 - (a) Dimethylglyoximato
 - (b) Oxalato ion
 - (c) Ethane-1,2-diamine

Select the correct answer using the codes given below:

- (1) a only
- (2) a and c only
- (3) c only
- (4) b and c only
- **2.** Which of the following is not correctly matched?
 - (1) NO_2^- Bidentate ligand
 - (2) Ethylenediamine Bidentate ligand
 - (3) SCN Monodentate ligand
 - (4) (CO) Monodentate ligand
- **3.** An ambidentate ligand is one which:
 - (1) Is linked to the metal atom at two points.
 - (2) Has two donor atoms but only one of them has the capacity to form a coordinate bond.
 - (3) Has two donor atoms but either of the two can form a coordinate bond.
 - (4) Forms chelate rings.
- **4.** Consider the following:

	Complex	Coordination Number	
I	[CuCl ₂]	P	6
II	Ni(CO) ₄	Q	5
III	[PtCl ₆] ⁴⁻	R	4
IV	$[Ni(NH_3)_6]^{2+}$	S	2

- (1) I-P; II-O; III-R; IV-S
- (2) I-R; II-S; III-O; IV-S
- (3) I-S; II-R; III-P; IV-P
- (4) I-P; II-R; III-Q; IV-S

5. Oxidation state of nitrogen is incorrectly given for:

Compound Oxidation state (1) [Co(NH₃)₅Cl] Cl₂ 0 (2) NH₂OH -1 (3) (N₂H₅)₂ SO₄ -2

6. The IUPAC name of [Co(NH₃)₃ BrCl(NO₂)] will be:

-3

- (1) Triamminebromidochloridonitrito-N-cobaltate(III)
- (2) Triamminebromidochloridonitrito-N-cobalt(III)
- (3) Triamminebromidochloridonitrito-O-cobaltate(III)
- (4) Triamminenitrito-O bromidochloridocobaltate(III)
- 7. The IUPAC name of the complex ion $[Cr(NO_2)(NH_3)(CN)_4]^{2-}$ is:
 - (1) Amminetetracyanidonitrito-O-chromate (III)
 - (2) Amminetetracyanidonitrito-N-chromate(III)
 - (3) Amminetetracyanidonitrito-N-chromium(III)
 - (4) Amminetetracyanidonitrito-N-chromate(II)
- **8.** IUPAC name of $K_3[Al(C_2O_4)_3]$ is called:
 - (1) Potassium aluminooxalato
 - (2) Potassium aluminium (III) trioxalate
 - (3) Potassium trioxalatoaluminate (III)
 - (4) Potassium trioxalatoaluminate (IV)

PARAKRAM JEE MAIN BOOKLET

- 9. The correct IUPAC name of complex, [Rh(en)₂(ONO) (SCN)] NO₃ is:
 - (1) Diethane-1. 2-diamine nitrito-Othiocyanato-S-rhodium (III) nitrate
 - (2) bis(ethane-1, 2-diamine) nitrito-Othiocyanato-S-rhodium(III) nitrate
 - (3) bis(ethane-1, 2-diamine) nitrito-Othiocyanato-S-rhodate(III) nitrate
 - (4) bis(ethane-1, 2-diamine) nitrito-Nthiocyanato-N-rhodium(II) nitrate.
- 10. In which of the following pairs of complexes, the central metals/ions do not have same effective atomic number?
 - (1) $[Cr(CO)_6]$ and $[Fe(CO)_5]$
 - (2) $[Cu(CN)_4]^{3-}$ and $[Ni(CO)_4]$
 - (3) $[Co(NH_3)_6]^{2+}$ and $[Ni(NH_3)_6]^{2+}$
 - (4) $[V(CO)_6]^-$ and $[Co(NO_2)_6]^{3-}$
- 11. The type of hybridization involved in the metal ion of $[Ni(H_2O)_6]^{2+}$ complex is
 - (1) d^3sp^2
- (2) $sp^{3}d^{2}$

(3) sp^{3}

- (4) dsp^2
- 12. [Pt (NH₃)₄] Cl₂ is:
 - (1) Square planar
- (2) Tetrahedral
- (3) Pyramidal
- (4) Pentagonal
- A complex compound which is formed by 13. nitrate and bromide ligands, gives 2 mol precipitate of AgBr, when reacts with AgNO₃, the formula of complex is:
 - (1) $[Co(NH_3)_5(NO_3)]Br_2$
 - (2) $[Co (NH_3)_5Br] Br (NO_3)$
 - (3) $[Co (NH_3)_4Br_2] NO_3$
 - (4) None of these
- 14. The geometry and magnetic moment of the complexes [NiCl₄]²⁻ and [PdCl₄]²⁻ respectively are:
 - (1) Tetrahederal, square planar; 2.83, 0
 - (2) Tetrahedral, tetrahedral; 2.83, 2.83
 - (3) Square planar, tetrahedral; 0, 2.83
 - (4) Square planar, square planar: 0, 0

- 15. The most stable complex among the following is:
 - (1) [NiCl₄]²⁻
- (2) $[Ni(H_2O)_2Cl_2]$
- (3) $[Ni(NH_3)_4]^{2+}$
- (4) $[Ni(CN)_4]^{2-}$
- 16. All the following complex ions are found to be paramagnetic:
 - $P : [FeF_6]^{3-}$
- $Q : [CoF_6]^{3-}$
- $R : [V(H_2O)_6]^{3+}$
- $S : [Ti(H_2O)_6]^{3+}$

The correct order of their paramagnetic moment (spin only) is:

- (1) P > Q > R > S
- (2) P < Q < R < S
- (3) P = O = R = S
- (4) P > R > Q > S
- In which of the following complex ion, the 17. metal ion will have t_{2g}^6 , e_g^0 configuration according to CFT: (2) [Fe(CN)₆]³⁻
 (3) [Fe(CN)₆]⁴⁻

- Amongst Ni(CO)₄, [Ni(CN)₄]²⁻ and [NiCl₄]²⁻ 18.
 - (1) Ni(CO)₄ and [NiCl₄]²-are diamagnetic and $[Ni(CN)_4]^{2-}$ is paramagnetic
 - (2) $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and Ni(CO)₄ is paramagnetic
 - (3) Ni(CO)₄ and [Ni(CN)₄]²⁻ are diamagnetic and [NiCl₄]²⁻ is paramagnetic
 - (4) Ni(CO)₄ is diamagnetic and [NiCl₄]²⁻ and $[Ni(CN)_4]^{2-}$ are paramagnetic
- The most stable complex among the following 19. is:
 - (1) $K_3[Al(C_2O_4)_3]$
 - (2) $[Pt(en)_2]Cl_2$
 - (3) $[Ag(NH_3)_2]C1$
 - (4) $K_2[Ni(EDTA)]$
- 20. Which of the following complex ions does not show optical activity:
 - (1) [PtBrClI(NO₂)(H₂O)NH₃]
 - (2) $\operatorname{cis}[\operatorname{Co}(\operatorname{en})_2\operatorname{Cl}_2]^+$
 - (3) $\operatorname{cis}[\operatorname{Co}(\operatorname{en})(\operatorname{NH}_3)_2\operatorname{Cl}_2]^+$
 - (4) $[Co(NH_3)_4Cl_2]^+$

- **21.** Which of the following complex shows ionization isomerism?
 - (1) $[Cr(NH_3)_6]Cl_3$
 - (2) $[Cr(en)_2]Cl_2$
 - (3) $[Cr(en)_3]Cl_3$
 - (4) [Co(NH₃)₅Br]SO₄
- **22.** Which kind of isomerism is shown by the complex [Co(NH₃)₅(ONO)]SO₄?
 - a. Ionization isomerism
 - b. Linkage isomerism
 - c. Geometrical isomerism
 - d. Optical isomerism
 - (1) a, b, c and d are correct
 - (2) a, c and d are correct only
 - (3) a and b are correct only
 - (4) b, c and d are correct only
- **23.** Which one of the following will not show geometrical isomerism
 - (1) [Cr(NH₃)₄Cl₂]Cl
 - (2) $[Co(en)_2Cl_2]Cl$
 - (3) $[Co(NH_3)_5NO_2]Cl_2$
 - (4) $[Pt(NH_3)_2Cl_2]$
- **24.** The IUPAC name of $[Co(NH_3)_6][Cr(C_2O_4)_3]$ is:
 - (1) Hexaamminecobalt (III) tris (Oxalato) chromate (III)
 - (2) Hexaamminecobalt (III) tris (Oxalato) chromium (III)
 - (3) Hexaamminecobalt (II) tris (Oxalato) chromium (III)
 - (4) Hexaamminecobalt (III) trisoxalatechromium (III)
- **25.** Consider the following statements:

According to Werner's theory.

- (I) Ligands are connected to the metal ions by ionic bonds.
- (II) Secondary valencies have directional properties
- (III) Secondary valencies are non-ionizable Of these statements:
- (1) I, II and III are correct
- (2) II and III are correct
- (3) I and II are correct
- (4) I and II are correct

- 26. The two isomers X and Y with the formula Cr(H₂O)₅ClBr₂ were taken for experiment on depression in freezing point. It was found that one mole of X gave depression corresponding to 2 moles of particles and one mole of Y gave depression due to 3 moles of particles. The structural formulae of X and Y respectively are:
 - (1) $[Cr(H_2O)_5Cl]Br_2, [Cr(H_2O)_4Br_2]Cl. H_2O$
 - (2) $[Cr(H_2O)_4Br_2]Cl.H_2O,[Cr(H_2O)_5Cl]Br_2$
 - (3) [Cr(H₂O)₅Br]BrCl, [Cr(H₂O)₄ClBr] Br.H₂O
 - (4) $[Cr(H_2O)_5Cl]Br_2$, $[Cr(H_2O)_3ClBr_2].2H_2O$
- **27.** Which of the following compounds show optical isomerism?
 - I. $\operatorname{cis-[Co(NH_3)_4Cl_2]}^+$
 - II. trans- $[Co(en)_2Cl_2]^+$
 - III. cis-[Co(en)₂Cl₂]⁺
 - IV. $\left[\operatorname{Co}(\operatorname{en})_3\right]^{3+}$

Select the correct answer using the codes given below:

- (1) I and II
- (2) II and III
- (3) III and IV
- (4) I, III and IV
- **28.** Which of the following coordination compounds would exhibit optical isomerism?
 - (1) Pentaamminenitrocobalt (III) iodide
 - (2) Diamminedichloroplatinum (II)
 - (3) Trans-dicyanobis (ethylenediamine) chromium (III) chloride
 - (4) Tris-(ethylenediamine) cobalt (III) bromide
- 29. Among $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ species, the hybridisation states of the Ni atom are, respectively

(At number of Ni = 28)

- (1) sp³, dsp², dsp²
- (2) sp^{3}, dsp^{2}, sp^{3}
- (3) sp^3, sp^3, dsp^2
- (4) dsp^2 , sp^3 , sp^3

PARAKRAM JEE MAIN BOOKLET

- **30.** [Cr(H₂O)₆]Cl₃ (at. no. of Cr = 24) has a magnetic moment of 3.83 B.M. The correct distribution of 3d electrons in the Chromium of the complex is:
 - (1) $3d_{xy}^1, 3d_{yz}^1, 3d_{xz}^1$
 - (2) $3d_{xy}^1, 3d_{yz}^1, 3d_{z^2}^1$
 - (3) $3d_{(x^2-v^2)}^1, 3d_{z^2}^1, 3d_{xz}^1$
 - (4) $3d_{xy}^{1}, 3d_{(x^{2}-y^{2})}^{1}, 3d_{yz}^{1}$
- **31.** Which of the following complex ions is expected to absorb visible light?

(At. no Zn = 30, Sc = 21, Ti = 22, Cr = 24)

- (1) $[Sc(H_2O)_3(NH_3)_3]^{3+}$
- (2) $[Ti(en)_2(NH_3)_2]^{4+}$
- (3) $\left[Cr(NH_3)_6 \right]^{3+}$
- (4) $[Zn(NH_3)_6]^{2+}$
- **32.** Among the following complexes the one which shows Zero crystal field stabilizations energy (CFSE)
 - (1) $[Ti(H_2O)_6]^{3+}$
- (2) $[Fe(H_2O)_6]^{3+}$
- (3) $\left[\text{Co}(\text{H}_2\text{O})_6\right]^{2+}$
- (4) $[Co(H_2O)_6]^{3+}$
- 33. Cobalt (III) chloride forms several octahedral complexes with ammonia. Which of the following will not give test for chloride ions with silver nitrate at 25°C?
 - (1) CoCl₃·4NH₃
- (2) CoCl₃·5NH₃
- (3) CoCl₃·6NH₃
- (4) CoCl₃·3NH₃
- 34. The IUPAC name of $K_2[Cr(CN)_2O_2(O)_2(NH_3)]$ is:
 - (1) Potassium amminedicyanodioxoperoxochromate(VI)
 - (2) Potassium amminecyanoperoxodioxochromium(IV)
 - (3) Potassium amminecyanoperoxodioxochromium(V)
 - (4) Potassium amminecyanoperoxodioxochromatic(IV)

- **35.** The increasing order of the crystal field splitting power of some common ligands is:
 - (1) $H_2O < OH^- < Cl^- < F^- < CN^-$
 - (2) $H_2O < Cl^- < OH^- < F^- < CN^-$
 - (3) $CN^- < H_2O < OH^- < F^- < Cl^-$
 - (4) $Cl^- < F^- < OH^- < H_2O < CN^-$
- **36. Assertion:** In complex, [Co(NH₃)₅(CO₃)]Cl, the oxidation state of cobalt is +3.

Reason: Carbonate ligand is a monodentate bivalent anion.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- 37. **Assertion:** The species $[CuCl_4]^{2-}$ exists but $[CuI_4]^{2-}$ does not.

Reason: $[NiCl_2(PPh_3)_2]$ have tetrahedral geometry.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **38.** The most stable ion is:
 - (1) $[Fe(OH)_5]^{3-}$
 - $(2) \ \left[FeCl_{6}\right]^{3-}$
 - (3) $[Fe(CN)_6]^{3-}$
 - (4) $[Fe(H_2O)_6]^{3+}$

- 39. One mole of Co(NH₃)₅Cl₃ gives 3 moles of ions on dissolution in water. One mole of this reacts with two moles of AgNO₃ to give two moles of AgCl. The complex is:
 - (1) [Co(NH₃)₄Cl₂]Cl.NH₃
 - (2) [Co(NH₃)₄Cl]Cl₂.NH₃
 - (3) $[Co(NH_3)_5Cl]Cl_2$
 - (4) [Co(NH₃)₃Cl₃].2NH₃
- 40. The co-ordination number of a central metal atom in a complex is determined by:
 - (1) The number of only anionic ligands bonded to metal ion
 - (2) The number of ligands around a metal ion bonded by pi bonds
 - (3) The number of ligands around a metal ion bonded by sigma and pi bonds
 - (4) The number of ligands around a metal ion bonded by sigma bonds
- 41. Co-ordination compounds have great importance in biological systems. In this context, which statement is incorrect?
 - (1) Carboxypeptidase-A is an enzyme and contains zinc.
 - (2) Haemoglobin is the red pigment of blood and contains iron.
 - (3) Cyanocobalmin is B_{12} and contains cobalt.
 - (4) Chlorophylls are green pigments in plants and contain calcium.
- 42. Which one has largest number of isomers?
 - (1) $[Co(en)_2Cl_2]^+$
- (2) $[Co(NH_3)_5Cl]^{2+}$
- (3) $[Ir(PR_3)_2H(CO)]^{2+}$
- (4) $[Ru(NH_3)_4Cl_2]^+$
- 43. The correct order of magnetic moments (only spin value in BM) is:
 - (1) $\operatorname{Fe}(CN)_6^{4-} > \left[\operatorname{CoCl}_4\right]^{2-} > \left[\operatorname{MnCl}_4\right]^{2-}$
 - (2) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
 - (3) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$
 - (4) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$
- The value of 'spin only' magnetic moment for 44. one of the following configurations is 2.84 BM. The correct one is:

- (1) d⁴ (in strong field ligand)
- (2) d⁴ (in weak field ligand)
- (3) d³ (in weak as well as strong field ligand)
- (4) d⁵ (in strong field ligand)
- 45. Nickel (Z = 28) combines with a uninegative monodentate ligand X⁻ to form a paramagnetic complex $[NiX_4]^{2-}$ The number of unpaired electron(s) in the nickel and geometry of this complex ion are, respectively:
 - (1) One, tetrahedral
 - (2) Two, tetrahedral
 - (3) One, square planar
 - (4) Two, square planar
- 46. In which of the following octahedral complexes of Co (at no. 27), will the magnitude of Δ_0 be the highest?
 - (1) $\left[\text{Co}(\text{C}_2\text{O}_4)_3 \right]^{3-}$
 - (2) $\left[\text{Co}(\text{H}_2\text{O})_6\right]^{3+}$
 - (3) $\left[\text{Co(NH_3)}_6\right]^{3+}$
 - (4) $[Co(CN)_6]^{3-}$
- 47. A solution containing 2.675 g of CoCl₃.6NH₃ (molar mass = 267.5 g mol^{-1}) is passed through a cation exchanger. The chloride ions obtained in solution were treated with excess of AgNO₃ to give 4.305 g of AgCl

(molar mass = 143.5 g mol^{-1}). The formula of the complex is (At. mass of Ag = 108 u)

- (1) [Co(NH₃)₆] Cl₃
- (2) [CoCl₂ (NH₃)₄] Cl
- (3) $[CoCl_3(NH_3)_3]$
- (4) $[CoCl(NH_3)_5] Cl_2$
- 48. Which of the following facts about the complex [Cr(NH₃)₆]Cl₃ is wrong?
 - (1) The complex involves d²sp³ hybridisation and is octahedral in shape.
 - (2) The complex is paramagnetic.
 - (3) The complex is an outer orbital complex.
 - (4) The complex gives white precipitate with silver nitrate solution.

PARAKRAM JEE MAIN BOOKLET

- **49.** Which of the following complex species is not expected to exhibit optical isomerism?
 - (1) $[Co(en)_3]^{3+}$
 - (2) $\left[\operatorname{Co}(\operatorname{en})_{2}\operatorname{Cl}_{2}\right]^{+}$
 - (3) [Co(NH₃)₃ Cl₃]
 - (4) $[Co(en)(NH_3)_2 Cl_2]^+$
- **50.** The octahedral complex of a metal ion M³⁺ with four monodentate ligands L₁, L₂, L₃ and L₄ absorb wavelengths in the region of red, green, yellow and blue, respectively. The increasing order of ligand strength of the four ligands is:
 - (1) $L_4 < L_3 < L_2 < L_1$
 - (2) $L_1 < L_3 < L_2 < L_4$
 - (3) $L_3 < L_2 < L_4 < L_1$
 - (4) $L_1 < L_2 < L_4 < L_3$
- **51.** On treatment of 100 mL of 0.1 M solution of CoCl₃.6H₂O with excess AgNO₃; 1.2×10^{22} ions are precipitated. The complex is:
 - (1) $[Co(H_2O)_3Cl_3].3H_2O$
 - (2) $[Co(H_2O)_6]Cl_3$
 - (3) $[Co(H_2O)_5Cl]Cl_2.H_2O$
 - (4) $[Co(H_2O)_4Cl_2]Cl.2H_2O$
- **52.** The correct statement about of the magnetic properties of $[Fe(CN)_6]^{3-}$ and $[FeF_6]^{3-}$ is: (Z = 26)
 - (1) Both are paramagnetic
 - (2) Both are diamagnetic
 - (3) [Fe(CN)₆]³⁻ is diamagnetic, [FeF₆]³⁻ is paramagnetic.
 - (4) [Fe(CN)₆]³⁻ is paramagnetic, [FeF₆]³⁻ is diamagnetic.
- **53.** Which of the following name formula combinations is not correct?

	rormuia	Name
(1)	$K_2[Pt(CN)_4]$	Potassium
		tetracyanoplatinate
		(II)
(2)	[Mn(CN) _e] ²⁻	Pentacyanomangane

(2) [Mn(CN)₅]²⁻ Pentacyanomangane se (II) ion

- (3) K[Cr(NH₃)₂Cl₄] Potassium diamminetetrachlor ochromate (III)
- (4) [Co(NH₃)₄(H₂O)l Tetraammineaquaio]SO₄ docobalt (III) sulphate
- 54. Which of the following complex ions has electrons that are symmetrically filled in both t_{2g} and e_g orbitals?
 - (1) $[FeF_6]^{3-}$
 - (2) $[Mn(CN)_6]^{4-}$
 - (3) $[CoF_6]^{3-}$
 - (4) $\left[\text{Co(NH_3)}_6\right]^{2+}$
- 55. Identify the correct trend given below: (Atomic No.: Ti = 22, Cr = 24 and Mo = 42)
 - $\begin{array}{ll} (1) & \Delta_o \text{ of } \left[Cr(H_2O)_6 \right]^{2^+} < \left[Mo(H_2O)_6 \right]^{2^+} \text{ and } \Delta_o \\ & \text{ of } \left[Ti(H_2O)_6 \right]^{3^+} < \left[Ti(H_2O)_6 \right]^{2^+} \end{array}$
 - (2) $\Delta_o \text{ of } \left[Cr(H_2O)_6 \right]^{2^+} > \left[Mo(H_2O)_6 \right]^{2^+} \text{ and } \Delta_o$ of $\left[Ti(H_2O)_6 \right]^{3^+} > \left[Ti(H_2O)_6 \right]^{2^+}$
 - (3) $\Delta_o \text{ of } \left[Cr(H_2O)_6 \right]^{2^+} > \left[Mo(H_2O)_6 \right]^{2^+} \text{ and } \Delta_o$ of $\left[Ti(H_2O)_6 \right]^{3^+} < \left[Ti(H_2O)_6 \right]^{2^+}$
 - (4) $\Delta_o \text{ of } \left[Cr(H_2O)_6 \right]^{2^+} < \left[Mo(H_2O)_6 \right]^{2^+} \text{ and } \Delta_o$ of $\left[Ti(H_2O)_6 \right]^{3^+} > \left[Ti(H_2O)_6 \right]^{2^+}$
- **56.** $[Co_2(CO)_8]$ displays:
 - (1) One Co–Co bond, four terminal CO and four bridging CO
 - (2) One Co–Co bond, six terminal CO and two bridging CO
 - (3) No Co–Co bond, four terminal CO and four bridging CO
 - (4) No Co–Co bond, six terminal CO and two bridging CO
- 57. The bond length in CO is 1.128 Å. What will be the bond length of CO in Fe(CO)₅?
 - (1) 1.158 Å
- (2) 1.128 Å
- (3) 2.198 Å
- (4) 1.118 Å
- **58.** Among the following metal carbonyls, the C-O bond order is lowest in:
 - (1) $[Mn(CO)_6]^+$
- (2) [V(CO)₆]
- (3) [Cr(CO)₆)]
- (4) [Fe(CO)₅]

59. Match each coordination compound in List-I with an appropriate pair of characteristics from List-II and select the correct answer using the code given below the lists.

 $\{en = H_2NCH_2CH_2NH_2 ; atomic numbers : Ti = 22; Cr = 24; Co = 27; Pt = 78\}$

	List- I		List- II	
	[Cr(NH ₃) ₄ Cl ₂]Cl		Paramagnetic	
I		Р	and exhibits	
1		1	ionisation	
			isomerism	
	[Ti(H ₂ O) ₅ Cl]		Diamagentic	
II	$(NO_3)_2$	Q	and exhibits cis-	
			trans isomerism	
	[Pt(en)(NH ₃)		Paramagentic	
III	Cl]NO ₃	R	and exhibits cis-	
			trans isomerism	
	[Co(NH ₃) ₄		Diamagentic	
IV	$(NO_3)_2]NO_3$	S	and exhibits	
		3	ionisation	
			isomerism	

- (1) I-S; II-Q; III-R; IV-P
- (2) I-R; II-P; III-S; IV-Q
- (3) I-Q; II-P; III-R; IV-S
- (4) I-P; II-R; III-S; IV-Q
- **60.** Consider the following statements:
 - S₁: $\left[Cr(NH_3)_6\right]^{3+}$ is an inner orbital complex with crystal field stabilization energy equal to $-1.2 \Delta_0$
 - **S2:** The complex formed by joining the CN ligands to Fe³⁺ ion has theoretical value of 'spin only' magnetic moment equal to 1.73 B.M.
 - S₃: $Na_2S + Na_2[Fe(CN)_5NO] \rightarrow Na_4[Fe(CN)_5 NOS]$, In reactant and product the oxidation states of iron are not same

And arrange in the order of true/false.

- (1) FTF
- (2) TTF
- (3) TTT
- (4) FFF

Integer Type Questions (61 to 75)

- 61. The oxidation state of Fe in brown ring complex [Fe $(H_2O)_5$ NO] SO_4 is :
- **62.** The number of geometrical isomers of [Pt(NH₃)₂Cl₂] is:
- 63. The number of isomers possible for square planar complex $K_2[PdClBr_2(SCN)]$ is
- **64.** The number of unpaired electrons in the complex ion $[CoF_6]^{3-}$ is: (At number Co = 27)
- 65. An excess of AgNO₃ is added to 100 mL of a 0.01M solution of dichlorotetraaquachromium (III) chloride. The number of mili-moles of AgCl precipitated would be:
- 66. How many EDTA (ethylenediaminetetraacetic acid) molecules are required to make an octahedral complex with a Ca²⁺ ion?
- 67. The magnetic moment (spin only) of [NiCl₄]²⁻ in Bohr magneton (BM) is: (Nearest integer)
- 68. The number of geometric isomers that can exist for square planar [Pt(Cl)(py)(NH₃)(NH₂OH)]⁺ is (py = pyridine):
- **69.** The spin magnetic moment of cobalt in the compound, Hg [Co(SCN)₄] in Bohr magneton (BM) is:

(Nearest integer)

- 70. How many of the following complexes are diamagnetic $K_3[Fe(CN)_6]$, $[Co(NH_3)_6]Cl_3$, $Na_3[Co(oxalate)_3]$, $[Ni(H_2O)_6]Cl_2$, $K_2[Pt(CN)_4]$ and $[Zn(H_2O)_6](NO_3)_2$
- 71. In the complex $Fe(CO)_x$, the value of x is:
- 72. The number of d-electrons in $[Cr (H_2O)_6]^{3+}$ [atomic number of Cr = 24] is:
- 73. If excess of AgNO₃ solution is added to 100 mL of a 2.4 M solution of dichlorobis (ethylenediamine) cobalt (III) chloride. How many mili- moles of AgCl be precipitated?
- 74. Oxidation number of Fe in violet coloured complex Na₄[Fe(CN)₅(NOS)] is:
- 75. Coordination number of Ni in $[Ni(C_2O_4)_3]^{4-}$ is:

HALOALKANES AND HALOARENES

Single Option Correct Type Questions (01 to 60)

- 1. A dextro-rotatory optically active alkyl halide undergoes hydrolysis by $S_N 2$ mechanism. The resulting alcohol is:
 - (1) Dextrorotatory
 - (2) Laevorotatory
 - (3) Optically inactive due to racemization
 - (4) May be dextro or laevorotatory
- **2.** Neopentyl bromide undergoes dehydro halogenation to give alkene even though it has no β-hydrogen. This is due to:
 - (1) E2 mechanism
 - (2) by direct dehydrohalogenation
 - (3) rearrangement of carbocation by E1 mechanism
 - (4) E1cB mechanism
- **3.** Which of the following does not give a precipitate with alcoholic AgNO₃?
 - (1) Benzyl chloride
- (2) Chlorobenzene
- (3) Allyl chloride
- (4) t-butyl chloride
- **4.** When alkyl halide is heated with dry Ag₂O. It produces:
 - (1) Ester
- (2) Ether
- (3) Ketone
- (4) Alcohol
- 5. Phosgene is a poisonous gas obtained in chloroform bottles, substance used to make it non-poisonous is:
 - (1) Formic acid
 - (2) Ethanol
 - (3) Dichloro methane
 - (4) CH₃COOH

6. Order of hydrolysis of the following in increasing order is:

(A)

————Br

(D)

(C)

(1)
$$A < B < C < D$$

- (2) D < C < B < A
- (3) C < B < A < D
- (4) B < C < A < D
- 7. Which of the following will be most reactive for E1 reaction?

(2) C_6H_5 – $\dot{C}H$ –Br

8. In which of the following reaction, regioselectivity can be observed?

(1)
$$CH_3$$
— $C-CH_2$ — CI $alc. KOH/\Delta$
 CH_3 — $C-CH_3$

(2) CH_3 — $C-CH_3$ $alc. KOH/\Delta$
 CI
 CH_3

(3) CH_3 — $C-CH_2$ — CH_3 $alc. KOH/\Delta$
 CI
 CH_3

(4) CH_3 — $C-CH_2$ — CI
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

9. The most probable product in the following reaction is:

$$\begin{array}{c}
& \text{Br} \\
& \text{Br} \\
& \Delta
\end{array}$$

Trans

$$(1) \bigcirc Br \qquad (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (4) \bigcirc (5)$$

10.
$$CH_3$$
- CH - $C(Br)CH_3$
 CH_3 CH_3 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

X and Y are respectively:

(1)
$$CH_3$$
 $C=C$ CH_3 CH_3 $C=C$ CH_3 CH_3 $C=C$ CH_3 CH_4 CH_4 CH_4 CH_5 CH_5

11. Which is the product of the following elimination reaction?

(1)
$$H_3C \xrightarrow{CH_3} C-CH-CH=CH_2 CH_3$$

(2)
$$H_3C$$
 $C=C$ CH_3 CH_3 CH_3

12.
$$C_3H_6Cl_2 \xrightarrow{\begin{array}{c} 1.KCN \\ 2.H_3O^{\oplus} \\ 3.\Delta \end{array}} CH_3-CHCOOH :$$

Hence reactant is:

$$(1) \quad \text{Cl--CH}_2\text{--CH}_2\text{--Cl}$$

(3)
$$CH_3-CH_2-CH < CI$$

(4)
$$CH_3 - C \xrightarrow{Cl} Cl$$
 CH_3

13.
$$CH_2$$
-CH=CH $\frac{Br_2/water}{NBS}$ (B) $\frac{Br_2/Fe}{(C)}$

(A), (B) and (C) respectively are:

PARAKRAM JEE MAIN BOOKLET

	A	В	C
1	CH ₂ -CH-CH ₂ Br Br	CH=CH-CH ₂ -Br	Br-CH ₂ -CH=CH ₂
2	CH ₂ -CH-CH ₂ Br Br	-CH-CH=CH ₂	CH ₂ -CH=CH ₂
3	CH ₂ -CH-CH ₂ Br Br	-CH=CH-CH ₂ -Br	Br CH ₂ -CH=CH ₂
4	Br Br CH ₂ -CH-CH ₂ Br Br Br	-CH-CH=CH ₂	Br-CH ₂ -CH=CH ₂

14.
$$H \xrightarrow{\text{CH}_3} \text{Br} \xrightarrow{\text{alc KOH}} \text{Product:}$$

Main product in above reaction is:

(1)
$$\overset{\text{H}}{\underset{\text{H}}{\text{C}}} \overset{\text{C}}{\underset{\text{CH}_{2}\text{Ph}}{\text{Ph}}}$$
(2) $\overset{\text{H}_{3}\text{C}}{\underset{\text{H}}{\text{C}}} \overset{\text{C}}{\underset{\text{C}}{\text{C}}} \overset{\text{H}}{\underset{\text{Ph}}{\text{C}}}$
(3) $\overset{\text{H}_{3}\text{C}}{\underset{\text{H}}{\text{C}}} \overset{\text{Ph}}{\underset{\text{C}}{\text{C}}} \overset{\text{Ph}}{\underset{\text{H}}{\text{C}}}$
(4) $\overset{\text{H}_{3}\text{C}}{\underset{\text{Ph}}{\text{C}}} \overset{\text{C}}{\underset{\text{C}}{\text{C}}} \overset{\text{H}}{\underset{\text{H}}{\text{C}}}$

15. Which one of the following is not E2 reaction?

(1)
$$CH_3$$
- CH - CH_2 - CH_3 $\xrightarrow{alc KOH, \Delta}$ Cl

$$(3) \qquad \xrightarrow{\text{(CH3)3COK}^{\Theta}, \Delta} \xrightarrow{\text{NaNH2, } \Delta}$$

(4)
$$CH_3$$
- C - CH_2 - Br $\xrightarrow{NH_3(\ell)} \Delta$
 CH_3

16. Most reactive alkyl halide towards E2 mechanism is:

(1) $(CH_3)_3C-CH_2Br$

(2)
$$(CH_3)_2CH-CH \stackrel{Br}{\leftarrow} CH_3$$

S_N2 reaction at an asymmetric carbon of a 17. compound always gives:

(1) An enantiomer of the substrate

(2) A product with opposite optical rotation

(3) A mixture of diastereomers

(4) A single stereoisomer

18.
$$(x) \xrightarrow{\stackrel{\bullet}{\underline{a}}} (1) \operatorname{PBr}_3 \longrightarrow (2) \operatorname{NaOH}(\operatorname{DMSO}) \longrightarrow$$

(y)

(x) and (y) are:

(1) Structural isomers

(2) Enantiomers

(3) Different compounds

(4) Identical compounds

19. Racemic mixture is obtain in which substrate when it is treated with CH₃OH

20. Br CH_2OH HBr (P2)

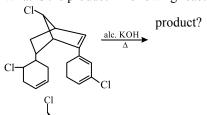
P1 and P2 are respectively:

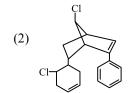
(2)
$$_{HO}$$
 $_{CH_{2}OH}$ $_{Br}$ $_{Br}$

(3)
$$CH_2OH$$
, Br

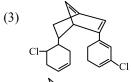
$$(4) \qquad OH \qquad Br \\ OH \qquad Br$$

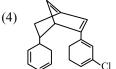
- **21.** Reaction between neopentyl bromide and ethanol gives 2-ethoxy-2-methylbutane as the principal product. Which one of the following is not true about this reaction?
 - (1) This involves a 1, 2-hydride shift
 - (2) This involves a 1,2-methyl shift
 - (3) This occurs through a S_N1 mechanism
 - (4) This is accompained with formation of alkenes as minor product
- **22.** In the given reaction


$$\begin{array}{c}
\text{OH} \\
\text{H} \\
\text{Cl}
\end{array}$$

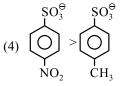

$$\begin{array}{c}
\text{NaOH} \\
\text{1 eq.}
\end{array}$$
[X],

[X] will be:


(3) Mixture of (1) and (2)


- **23.** Select false statement from the following?
 - (1) The step $F \cap CF_2 = CCI_2 \longrightarrow F + CF_2 = CCI_2$ is a part of E1 cB elimination.
 - (2) E-1 reaction can be regio selective.
 - (3) Both $S_N 2$ & E2 reactions can be stereo specific.
 - (4) In E1 and E2 reactions inversion of configuration takes place.
- **24.** What is the product in following reaction?

(1)


- 25. Which of the following is polar protic solvent?
 - (1) CH₃COCH₃
 - (2) C_2H_5 -OH
 - (3) CH₃SOCH₃
 - (4) CH_3 —C—NMe

PARAKRAM JEE MAIN BOOKLET

- **26.** Which one of the following has maximum nucleophilicity:
 - (1) $\overset{\Theta}{\text{CH}}_3$
- (2) [⊖]NH₂
- (3) CH₃O ⊖
- (4) CH₃-C-O CH₃ CH₃
- 27. Which of the following is **incorrect** order for leaving group ability in S_N reaction?

- (2) $C1^{\Theta} > F^{\Theta}$
- (3) $CF_3SO_3^{\ominus} > CH_3SO_3^{\ominus}$

- **28.** Which one of the following has maximum nucleophilicity:
 - (1) CH₃S[⊖]
- (2) $C_6H_5-\overset{\Theta}{O}$
- (3) Et₃N
- (4) F^e
- **29.** For the following the increasing order of nucleophilicity would be:
 - (i) I-

(ii) Cl-

- (iii) Br-
- (1) I⁻ < Cl⁻ < Br⁻
- (2) $Br^- < Cl^- < I^-$
- (3) $I^- < Br^- < Cl^-$
- (4) $Cl^- < Br^- < I^-$
- **30.** The correct order of leaving group ability is/are:
 - (1) $Ph-COO^{\Theta} > CH_3SO_3^{\Theta}$
 - (2) $CF_3SO_3^{\Theta} > CCl_3SO_3^{\Theta}$
 - (3) $\stackrel{\Theta}{\text{CN}} > I^{\Theta}$
 - (4) $\stackrel{\Theta}{NH}_2 > \stackrel{\Theta}{OH}$

- **31.** Which of the following statement is not true?
 - (1) Nucleophiles possess unshared pairs of electron which are utillized in forming bonds with electrophilic substrate.
 - (2) The cyanide ion is an ambident nucleophile and causes nucleophilic substitution of alkyl halide by either of its carbon atom or nitrogen atom.
 - (3) The nitrite ion is an ambident nucleophile and causes nucleophilic substitution of alkyl halide by either of its oxygen atom or nitrogen atom.
 - (4) Strength of nucleophile generally decreases on going down a group in the periodic table.
- **32.** Out of the followings best leaving group is:
 - (1) F-

(2) Cl⁻

(3) Br-

- (4) I⁻
- 33. $CH_3Br + Nu^- \rightarrow CH_3 Nu + Br^-$

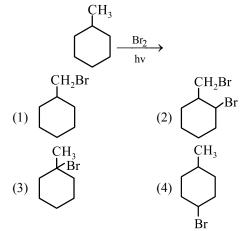
The decreasing order of the rate of the above reaction with nucleophiles (Nu⁻) A to D is:

 $[Nu^- = (A) PhO^-, (B) AcO^-, (C) HO^-, (D) CH_3O^-]$

- (1) D > C > A > B
- (2) D > C > B > A
- (3) A > B > C > D
- (4) B > D > C > A
- 34. $+ HBr \xrightarrow{R_2O_2} Product$: Product

is:

- (4) Br
- **35.** Chlorobenzene is o, p-directing in electrophilic substitution reaction. The directing influence is explaned by
 - (1) +M of Ph
- (2) +I of Cl
- (3) +M of Cl
- (4) +I of Ph


- **36.** Benzene reacts with n-propyl chloride in the presence of anhydrous AlCl₃ to give predominantly:
 - (1) n-propylbenzene
 - (2) Cumene
 - (3) 3-propyl-1-chlorobenzene
 - (4) no reaction
- **37.** Lindane can be obtained by reaction of benzene with
 - (1) CH₃Cl/anhy AlCl₃
 - (2) Cl₂/sunlight
 - (3) C₂H₅I/anhy. AlCl₃
 - (4) CH₃COCl/AlCl₃
- **38.** In which of the following pairs, the bromination of first member is easier than the second member?
 - (1) Isobutane, n-butane
 - (2) n-Butane, isobutane
 - (3) Methane, ethane
 - (4) None of these
- **39.** Halogenation of alkanes is an example of
 - (1) Free radical addition reaction
 - (2) Free radical substitution reaction
 - (3) Nucleophilic substitution reaction
 - (4) Nucleophilic addition reaction.
- **40.** Methane reacts with excess of chlorine in diffused sunlight to give the final product as
 - (1) Chloroform
 - (2) Carbon tetrachloride
 - (3) Methylene chloride
 - (4) Methyl chloride.
- 41. A gaseous hydrocarbon 'X' on reaction with bromine in light forms a mixture of two monobromo alkanes and HBr. The hydrocarbon 'X' is:
 - (1) CH₃-CH₃

(3)

42. The major product obtained in the reaction:

- **43.** Iodination of an alkane is carried out in presence of:
 - (1) Alcohol
 - (2) $P + I_2$
 - (3) HNO₃ or HIO₃
 - (4) A reducing agent
- **44.** Tert-alkyl halide is obtained as major product in:

(1)
$$(CH_3)_3CH \xrightarrow{Br_2} hv$$

(2)
$$(CH_3)_2CH-CH=CH_2 \xrightarrow{Peroxide}$$

(3)
$$(CH_3)_2 CH-CH=CH_2 \xrightarrow{HBr}$$

(4) Both (1) and (3)

45. Intermediate in the following reaction is

$$CH_3$$
- CH = CH_2 \xrightarrow{HCl} $\xrightarrow{Peroxide}$

(1)
$$CH_3 - CH - CH_3$$

(3)
$$CH_3 - \dot{C}H - CH_2 - Cl$$

(4)
$$CH_3 - \overset{\oplus}{C}H - CH_2 - Cl$$

46. $CH_2 = CHCH_2CH = CH_2 \xrightarrow{NBS} X$ (Major), (X) is:

(1)
$$\overrightarrow{CH}_2 = \overrightarrow{CH} - \overrightarrow{CHCH} = \overrightarrow{CH}_2$$
Br

- (2) $CH_2 = CH CH = CH CH_2 Br$
- (3) $CH_2 = CHCH_2CH = CHBr$

(4)
$$CH_2 = CHCH_2C = CH_2$$
Br

47.
$$\longrightarrow$$
 P, P will have

configuration:

48.
$$CH_3 - C \equiv C - CH_3$$

$$\xrightarrow{\text{(1) } H_2/\text{Pd/CaCO}_3 \text{ or } BaSO_4} X$$

$$\text{(2) } Br_2$$

- (1) (d)-2, 3-Dibromobutane
- (2) (ℓ) -2, 3-Dibromobutane
- (3) (d, ℓ) -2, 3-Dibromobutane
- (4) meso-2, 3-Dibromobutane
- **49.** 1-Butyne can be converted into 1-bromo-1-butene by reacting it with which of the following reagent?
 - (1) HBr
 - (2) HBr and (C₆H₅COO)₂
 - (3) Br₂ and H₂O
 - (4) Br₂ and CCl₄
- **50.** When nitrobenzene is treated with Br₂ in presence of FeBr₃ the major product formed is m-bromonitrobenzene. Statement which is related to obtain the m-isomer is:
 - (1) The electron density on meta carbon is more than that on ortho and para positions
 - (2) Loss of aromaticity when Br⁺ attacks at the ortho and para positions and not at meta position

- (3) Easier loss of H⁺ to regain aromaticity from the meta position than from ortho and para positions
- (4) None of the above
- **51.** A particular form of tribromobenzene forms three possible mononitrotribromo-benzene. The structure of the compound is:

$$(1) \begin{array}{c} Br \\ Br \\ Br \end{array} \qquad (2) \begin{array}{c} Br \\ Br \\ Br \end{array}$$

(3)
$$Br$$
Br
 Br
(4) Both 2 and 3

52. Which statement is correct about photochemical bromination of Butane

$$CH_3-CH_2-CH_2-CH_3 \xrightarrow{\quad Br_2,h\nu \quad}$$

- (1) 1-Bromobutane and 2-Bromobutanes are formed in equal amounts.
- (2) 2-Bromobutane is formed with faster rate than 2-chlorobutane in the other experiment of chlorination.
- (3) The major product is an equimolar mixture of two compounds
- (4) Homolysis of C H bond has lower activation energy than homolysis of Br Br bond.

53.
$$\begin{array}{c}
H_{3}C \\
H
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
H
\end{array}$$

54. Match the reaction intermediates formed during the reactions given in Column-I with Column-II

Coldinii II							
	Co	lumn-I			Column-II		
P	CH ₃ –C≡C–H			A	Carbocation		
	_ N	la .			(Non		
					classical)		
Q	CF	I ₃ -CH=C	CH ₂	В	Carbocation		
	<u>H</u>	$\xrightarrow{\text{HBr}}$			(Classical)		
R	CF	CH ₃ -CH=CH ₂			Carbanion		
	_	HBr					
	Per	oxide					
S	CF	I ₃ –CH=C	CH ₂	D	Alkyl free		
	Br	$2/\text{CCl}_4$			radical		
	P	Q	R	5	8		
(1)	A	C	В	I)		
(2)	C	D	Α	I	3		
(3)	C	В	D	I	4		

55. Reaction of one molecule of HBr with one molecule of 1, 3-butadiene at 40°C gives predominantly

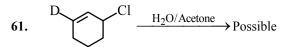
D

 \mathbf{C}

В

- (1) 3-bromobutene under kinetically controlled conditions
- (2) 1-bromo-2-butene under thermodynamically controlled conditions
- (3) 3-bromobutene under thermodynamically controlled conditions.
- (4) 1-bromo-2-butene under kinetically controlled conditions.
- **56.** 2-Methylbutane on reacting with bromine in the presence of sunlight gives mainly?
 - (1) 1-Bromo-3-methylbutane
 - (2) 1-Bromo-2-methylbutane
 - (3) 2-Bromo-3-methylbutane
 - (4) 2-Bromo-2-methylbutane
- 57. Of the five isomeric hexanes, the isomer which can give two monochlorinated structural isomers is
 - (1) n hexane

(4) A


- (2) 2,3 dimethylbutane
- (3) 2,2 dimethylbutane
- (4) 2 methylpentane

- **58.** The reaction of toluene with Cl₂ in presence of FeCl₃ gives predominantly:
 - (1) o- and p-chlorotoluene
 - (2) m-chlorotoluene
 - (3) benzovlchloride
 - (4) benzyl chloride
- **59.** Which of the following reactions will yield 2,2-dibromopropane?
 - (1) $CH_3-C \equiv CH + 2HBr \longrightarrow$
 - (2) $CH_3CH=CHBr + HBr \longrightarrow$
 - (3) $CH \equiv CH + 2HBr \longrightarrow$
 - (4) CH_3 –CH= CH_2 + HBr \longrightarrow
- **60. Assertion:** Addition of bromine to trans-2-butene yields meso-2. 3-dibromobutane.

Reason: Bromine addition to an alkene is an electrophilic addition

- (1) Assertion is True, Reason is True; Reason is a correct explanation for Assertion.
- (2) Assertion is True, Reason is True; Reason is NOT a correct explanation for Assertion.
- (3) Assertion is True, Reason is False.
- (4) Assertion is False, Reason is True.

Integer Type Questions (61 to 75)

number of products and fractions on fractional distillation are x and y respectively. Find the value of x + y.

- **62.** How many of the following is an electrophile?
 - (i) H₂O
 - (ii) OH-
 - (iii) NO₂⁺
 - (iv) SO₃
 - (v) PCl₅

63. Chlorination of butane takes place as,

$$CH_3-CH_2-CH_2-CH_3+Cl_2 \xrightarrow{hv}$$

$$Cl \qquad Cl \qquad Cl \qquad CH_2-CH_2-CH_3+CH_3-CH_2-CH_3-CH_2-CH_3$$
1-Chlorobutane 2-Chlorobutane

Consider the following relative reactivity of C – H bonds for chlorination.

Degree of	1° C – H	2° C – H	3° C − H
C – H			
Relative	1	3	5
reactivity			
for chlorination			
(RR)			

Percentage yield of 2-chlorobutane will be: (Nearest integer)

64. The molar mass of compound X in the reaction is:

$$+ ICl \xrightarrow{anhydrous AlCl_3} X (Consider$$

Atomic weight of Iodine: 127 u and chlorine: 35 u).
Br

65.
$$\underbrace{\frac{(i) \operatorname{Cl}_2 / \operatorname{Fe}}{(ii) \operatorname{H}_2 \operatorname{O}, \Delta, \operatorname{H}^+}}_{SO_3 \operatorname{H}} \text{ Product. Total no. of}$$

substituents present on benzene ring in final product is:

- **66.** The number of monochloro derivatives of isohexane is (Only structural isomers)
- 67. When 1-butyne is treated with excess of HBr, the expected product is p, q- dibromobutane, where p and q are position of bromine. Find the value of (p + q).
- **68.** The number of possible enantiomer pairs that can be produced during monochlorination of 2-methylbutane is

- **69.** 3-Methyl-pent-2-ene on reaction with HBr in presence of peroxide forms an addition product. The number of possible stereoisomers for the product is:
- **70.** In the following reaction sequence

Cl-Cl
$$\longrightarrow$$
 Cl + Cl (Step-1)
CH₄ + Cl \longrightarrow CH₃+ HCl (Step-2)
CH₃ + Cl₂ \longrightarrow CH₃Cl + Cl (Step-3)

$$\overset{\bullet}{\text{CH}_3} + \overset{\bullet}{\text{CH}_3} \longrightarrow \text{CH}_3 - \text{CH}_3$$
 (Step-4

The chain terminating step is:

- 71. Which of the following are chiral molecules
 - (i) Ph-CH=C=C=CH-Cl
 - (ii) CH₃-CH=C=C=C=CH-CH₃

- 72. How many n-octene can show geometrical isomerism?
- 73. How many geometrical isomers are possible for Hepta-2, 5-dienoic acid:
- 74. For given compound $CH_3 CH CH = CH CH_3$ OH

75. The total number of possible isomers with molecular formula C_6H_{12} that contain a cyclobutane ring.

Number of optically active stereoisomers are?

ALCOHOLS, PHENOLS AND ETHERS

Single Option Correct Type Questions (01 to 60)

1.
$$\begin{array}{c|c} O & O & & NaBH_4 \\ \hline O & & & LiAlH_4 \\ \hline COCl & & & \end{array}$$

A and B are respectively:

A and B are respectively:

OH OH OH

$$CH_2 - OH$$

OH OH

(4) Both A and B
$$O$$
 COCI

2. Choose the correct statement:

(3) Both A and B

- (1) LiAlH₄ cannot reduce isolated carbon carbon double or triple bond
- (2) Borane and LiAlH₄ have generally same reducing power and same mechanism
- (3) LiAlH₄ can reduce isolated carbon carbon double bond
- (4) LiAlH₄ is a weak hydride donor than NaBH₄

3. Reaction involving syn addition is:

$$(1) \quad CH_2 = CH_2 \xrightarrow{H^+/H_2O} \rightarrow$$

(2)
$$CH_3CH = CH_2 \xrightarrow{HX}$$

(3)
$$CH_3CH = CH_2 \xrightarrow{Hg(OAc)_2/H_2O} NaBH_4$$

(4)
$$CH_2 = CH_2 \xrightarrow{B_2H_6/THF} \xrightarrow{H_2O_2/OH^-}$$

- 4. An alkene obtained by the dehydration of an alcohol (A) on ozonolysis gives two molecules of acetaldehyde for each molecule of the alkene. The alcohol (A) is
 - (1) CH₃CH₂CH₂OH
 - (2) CH₃CH₂OH
 - (3) $CH_3 CH = CHCH_2OH$
 - (4) CH₃CH₂CHOHCH₃
- 5. An organic compound having the molecular formula C₃H₆O does not give a precipitate with 2, 4 dinitrophenyl hydrazine and does not react with sodium metal. The compound is expected to be
 - (1) $CH_3 CH_2 CHO$
 - (2) CH₃ CO CH₃
 - (3) $CH_3 = CH CH_2 OH$
 - (4) $CH_2 = CH OCH_3$
- **6**. The product of the reaction

$$(1) \qquad (2) \qquad (3)$$

7. Pyridinium chlorochromate and MnO₂ are used as selective oxidizing agents in organic synthesis. What would be the oxidation products of compound X, when it reacts separately with PCC and MnO₂?

- 8. A compound of molecular formula C₆H₆O turns ferric chloride solution violet and produces no effervescence with NaHCO₃. The compound is
 - (1) Phenol
 - (2) Anisole
 - (3) Benzoic acid
 - (4) All of these
- 9. Which of the following reaction does not form ether as major product?

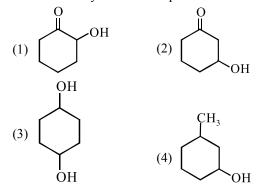
(1)
$$CH_3 - C - O - Na + CH_3CH_2Br \longrightarrow CH_3$$

(2)
$$CH_3 - C - Br + CH_3CH_2ONa \longrightarrow CH_3$$

(4)
$$CH_3 - C - ONa + CH_3 - CH_2$$

$$H$$

$$\begin{array}{ccc} & CH_3 \\ \mathbf{10}. & CH_3 - C - CH_2 - CH_3 \\ OH & OH \end{array}$$


 $\frac{\text{Conc. H}_2\text{SO}_4}{\Delta}$ Major Product

Major Product is:

11. Identify the major product formed in the following reaction

12. The relative rate of acid catalyzed dehydration of following alcohols would be:

- (1) III > I > IV > II
- (2) III > IV > I > II
- (3) I>III>IV>II
- (4) IV > III > I > II
- 13. Maximum dehydration takes place that of:

- 14. During dehydration of alcohols to alkenes by heating with concentrated H₂SO₄, the initiation step is
 - (1) Protonation of alcohol molecule
 - (2) Formation of carbocation
 - (3) Elimination of water
 - (4) Formation of an ester
- 15. Which of the following compounds will most readily be dehydrated to give alkene under acidic condition?
 - (1) 4-Hydroxypentan-2-one
 - (2) 3-Hydroxypentan-2-one
 - (3) 1-Pentanol
 - (4) 2-Hydroxycyclopentanone
- **16**. The major product of the following reaction is:

- (1) $CH_3CH=C=CH_2$
- (2) CH₃CH=CHCH₂NH₂
- (3) CH₃CH₂C≡CH
- (4) $CH_2=CH-CH=CH_2$

17. Which of the following is not expected to be intermediate of the following reaction?

$$(1) \xrightarrow{\bigoplus_{H_2O}} OH$$

$$(2) \xrightarrow{\bigoplus_{\Theta}} OH$$

$$(3) \xrightarrow{\bigoplus_{OH_2}} (4) \xrightarrow{\bigoplus_{\Theta}} OH$$

Conc. HCl + Anhydrous $ZnCl_2 \rightarrow X$ (Major Product)

X is:

19. Which describes the best stereochemical aspects of the following reaction?

$$\begin{array}{c} CH_3 \\ Et \xrightarrow{H-Br} Product \end{array}$$

- (1) Inversion of configuration occurs at the carbon undergoing substitution.
- (2) Retention of configuration occurs at the carbon undergoing substitution.

- (3) Racemization occurs at the carbon undergoing substitution.
- (4) The carbon undergoing substitution is not stereogenic

20.
$$CH_3(CH_2)_2CH_2OH \xrightarrow{HBr} X$$
, (major)

Identify X and the type of mechanism of the reaction?

(1)
$$CH_3 - CH_2 - CH_2 - CH_2 - Br & S_N 1$$

(2)
$$CH_3 - CH_2 - CH_2 - CH_2 - Br \& S_N 2$$

$$\begin{array}{ccc} \text{(4)} & \text{CH}_3\text{--CH--CH}_2\text{--CH}_3\,\&\,S_{_{\rm N}}2\\ & \text{Br} \end{array}$$

21.

- (1) S-2-Chlorobutane
- (2) R-2-Chlorobutane
- (3) Mixture of R and S, 2-Chlorobutane
- (4) 1-Chlorobutane
- 22. 6-Chlorohexan-2-ol $\xrightarrow{\text{NaNH}_2}$ major product is:

23. Consider the following reaction.

$$CH_{3} - CH_{2} - CH - CH_{3}$$

$$\xrightarrow{SOCl_{2}} CH_{3} - CH_{2} - CH - CH_{3}$$

In the above reaction which phenomenon will take place:

- (1) Inversion
- (2) Retention
- (3) Racemisation
- (4) Isomerisation

24. In the given reaction,

$$\xrightarrow{\text{HCl}/\Delta} [X] + [Y]$$

[X] and [Y] respectively will be:

- (1) CH₃-CH₂ -CH₂OH & CH₃-CH₂ -Cl
- (2) CH₃-CH₂-CH₂-Cl & CH₃-CH₂-OH
- (3) CH₃-CH₂-CH₂-Cl & CH₂=CH₂
- (4) CH₃-CH=CH₂ & CH₂=CH₂

$$\begin{array}{c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

25.

The products X and Y are:

26.
$$Ph$$
— C — O — CH_3 — HBr \rightarrow $(P) + (Q)$
 $Alcohol$ Alkyl Halide
 CH_3

(P) & (Q) respectively is:

$$\begin{array}{c} H \\ \mid \\ (1) \end{array} \begin{array}{c} Ph - C - OH, CH_3 - Br \\ \mid \\ CH_3 \end{array}$$

(2) Ph-CH₂-OH, CH₃-CH₂-Br

(4) CH₃-OH, Ph-CH₃-CH₂-Br

27.
$$CH_3 - CH - CH_2 + (CH_3)_2 CHMgBr \xrightarrow{(i) Et_2O} \rightarrow$$

What will be the product:

(1) CH₃-(CH₂)₄-CH₂-OH

(2)
$$CH_3 - CH = CH - CH_3$$

 CH_3

(3)
$$CH_3 - CH - CH_2 - CH$$

$$CH_3 - CH - CH_2 - CH_3$$

$$CH_3 - CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_3 - CH_3 - CH_3$$

(4)
$$CH_3 - CH - CH_2 - CH_2OH$$

 $CH(CH_3)_3$

28.
$$OH \xrightarrow{HBr} (A),$$
 CH_2OH

$$\begin{array}{c}
OH & \xrightarrow{HBr} \\
OCH_3
\end{array}$$

The product (A) and (B) are respectively:

(1)
$$\underset{\text{CH,Br}}{\bigodot}^{\text{OH}} \underset{\text{OH}}{\bigotimes}^{\text{OH}}$$

(2)
$$\bigcirc OH \otimes \bigcirc OH$$
 $\otimes CH_2Br \otimes Br$

(3)
$$\bigcirc OH \otimes \bigcirc Br$$
 $CH_2Br \otimes Br$

(4)
$$\bigcirc$$
 Br & \bigcirc Br \bigcirc CH₂OH OCH₃

29.
$$CH_2-O$$
 Br_2/Fe

Conc. HBr

Product is:

(1)
$$CH_2Br + HO \longrightarrow Br$$

(3)
$$\langle \bigcirc \rangle$$
 CH_2 OBr

(4)
$$HO \longrightarrow CH_2 \longrightarrow Br$$

30. $\begin{array}{c} Ph \\ \hline \\ C \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} Ph \\ C \\ O \end{array}} \xrightarrow{\begin{array}{c} 18 \\ H_{2}O \\ H^{\oplus} \end{array}}$

The major product is:

with retention, optically active

with racemisation

with inversion, optically active

$$\begin{array}{c|c}
 & OH & OH \\
 & | & | \\
 & | & | \\
 & (4) & CH_3 - C - CH_2 \\
 & | & | \\
 & Ph
\end{array}$$

with racemisation

31. In the reaction $\langle - \rangle$ OCH₃ $\xrightarrow{\text{HBr}}$

the products are:

(1) Br—
$$\bigcirc$$
 OCH₃ and H₂

(2)
$$\langle \overline{} \rangle$$
—Br and CH₃Br

(3)
$$\langle \overline{} \rangle$$
—Br and CH₃OH

(4)
$$\langle \overline{} \rangle$$
 OH and CH₃Br

32. The major product in the following reaction is:

Cl
$$CH_{3} \xrightarrow{1. CH_{3}MgBr, dry \text{ either, } 0^{\circ}C}$$

$$(1) \quad H_{3}C$$

$$CH_{3}$$

$$CH_{3}$$

- **33**. From amongst the following alcohols the one that would react fastest with conc. HCl and anhydrous ZnCl₂, is
 - (1) 2-Butanol
 - (2) 2-Methylpropan-2-ol
 - (3) 2-Methylpropanol
 - (4) 1-Butanol
- 34. An unknown alcohol is treated with the "Lucas reagent" to determine whether the alcohol is primary, secondary or tertiary. Which alcohol reacts fastest and by what mechanism:
 - (1) Secondary alcohol by S_N1
 - (2) Tertiary alcohol by S_N1
 - (3) Secondary alcohol by $S_N 2$
 - (4) Tertiary alcohol by S_N2
- **35**. The major product formed in the following reaction is:

$$(1) \bigcirc OH \qquad (2) \bigcirc I$$

(3)
$$OH$$
 (4) I

36. The major product of the following reaction is:

$$OH \xrightarrow{1.K_2CO_3} OH \xrightarrow{2.CH_3I(leq.)}$$

$$(1) \bigcirc \bigcirc$$

37. In the following reaction sequence:

$$(C_{3}H_{6}^{I}Cl_{2}) \xrightarrow{KOH(aq)} II \xrightarrow{(i) CH_{3}MgBr} \xrightarrow{(ii) H_{2}O/H^{+}}$$

$$III \xrightarrow{Anhy. ZnCl_{2}+Con.HCl}$$

gives turbidity immediately

The compound I is:

38. On treatment of the following compound with a strong acid, the most susceptible site for bond cleavage is:

- (1) $C_1 O_2$
- (2) $O_2 C_3$
- (3) $C_4 O_5$
- (4) $O_5 C_6$
- **39**. The major product of the following reaction:

40. A compound X (C₅H₁₂O₄) upon treatment with CH₃MgX gives 4 mole of methane. Identify the structure of (X).

41.
$$CH_2 - CH_2 - CH_3 - CH_3 - CH_3 - CH_3 - CH_2O$$

Product is:

(2)
$$CH_3 - CH_2 - \dot{C}H - CH_2$$

(3)
$$CH_3 - CH_2 - CH - CH_2$$

42.
$$P \xrightarrow{PhMgbr} \xrightarrow{H_2O} CH_3 - CH - Ph (d+\ell)$$

- (1) CH₃COOH
- (2) H-COOCH₃
- (3) CH₃-COCl
- (4) $CH_3-CH = O$

43. Match List I (Reaction) with List II (Product) and select the correct answer using the code given below the lists:

	List-I		List-II
A	$CH_3COCH_3+CH_3MgBr$ $\xrightarrow{H_2O}$	P	CH ₃ –CH ₂ – CH ₂ –OH
В	$\begin{array}{c} \text{CH}_3\text{-C-CH}_3\text{+NaBH}_4\\ \text{O} \\ &\xrightarrow{\text{EtOH}} \end{array}$	Q	CH ₃ -CH-CH ₃ OH
С	$CH_3-C-CH_2-CH_3$ 0 $+CH_3MgBr \xrightarrow{H_2O}$	R	CH ₃ CH ₃ -C-CH ₂ -CH ₃ OH
D	$CH_3-CH_2-C-OCH_3$ 0 $+LiAlH_4 \xrightarrow{H_2O}$	S	CH ₃ CH ₃ -C-CH ₃ OH

Codes:

	Α	В	C	D
(1)	Q	S	R	P
(2)	C	\circ	D	D

44. Consider reduction of 2-butanone.

$$B \stackrel{\text{NaBD}_4}{\longleftarrow} 2\text{-butanone} \stackrel{\text{NaBD}_4}{\longleftarrow} A$$

$$NaBD_4 \longrightarrow A$$

$$NaBH_4 \longrightarrow A$$

$$D_2O \longrightarrow C$$

A, B and C are respectively:

(1) CH₃CHCH₂CH₃ in all cases

45. 2-Phenylbutan-2-ol can be prepared by

(1)
$$PhMgBr + \longrightarrow \xrightarrow{Ether} \xrightarrow{H^{\oplus}}$$

(2) $CH_3MgBr + Ph - C - C_2H_5 \xrightarrow{Ether} \xrightarrow{H^{\oplus}}$
(3) $C_2H_5MgBr + Ph - C - CH_3 \xrightarrow{Ether} \xrightarrow{H^{\oplus}}$

(4)
$$CH_3CH_2CH_2MgBr+PhCHO \xrightarrow{Ether} H^{\oplus}$$

46. Ethylester $\xrightarrow{\text{CH}_3\text{MgBr}}$ P

The product P will be:

(1)
$$H_3C$$
 CH_3 CH_3 C_2H_5 C_2 C_2H_5 C_2 C_2 C_2 C_2 C_2 C_2 C_3 C_3 C_4 C_5 C_5

- 47. Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of NH₄Cl gives
 - (1) Acetone
 - (2) Acetamide
 - (3) 2-Methyl-2-propanol
 - (4) Acetyl iodide

- 48. CH_3CH_2 — $\overset{\bullet}{C}$ - CH_3 cannot be prepared by:
 - (1) $HCHO + PhCH(CH_3)CH_2MgX$
 - (2) $PhCOCH_2CH_3 + CH_3MgX$
 - (3) $PhCOCH_3 + CH_3CH_2MgX$
 - (4) $CH_3CH_2COCH_3 + PhMgX$
- **49.** In which of the following reactions phenol is not obtained:

(1)
$$NaOH/CaO$$

COOH

MgBr

(2) H_3O^+

(3) Cl

(i) NaOH

(ii) H[®]

N₂Cl

(4) H_2O
 Δ

50.
$$+ CH_3-CH=CH_2 \xrightarrow{H_3PO_4} A$$

$$\xrightarrow{(1) O_2, \Delta \atop (2) H_3O^+} B + C$$

The products B & C are respectively:

- (1) Phenol & acetic acid
- (2) Phenol & acetaldehyde
- (3) Benzoic acid & acetone
- (4) Phenol & acetone OCH₃

51.
$$\xrightarrow{\text{Br}_2}$$
 Product. The major product

obtained is:

$$(1) \begin{array}{c} OCH_3 \\ \hline \\ Br \end{array} \qquad (2) \begin{array}{c} OCH_3 \\ \hline \\ Br \end{array}$$

$$(3) \bigcup_{Br}^{OCH_3}$$

$$(4) \bigcup_{Br}^{OCH_3}$$

52. When 2-hydroxybenzoic acid (salicylic acid) is treated with bromine water, the product formed is

(1)
$$\begin{array}{c} OH \\ Br \\ COOH \\ \end{array}$$
 (2) $\begin{array}{c} OH \\ COOH \\ \end{array}$ (3) $\begin{array}{c} OH \\ Br \\ \end{array}$ $\begin{array}{c} OH \\ Br \\ \end{array}$ $\begin{array}{c} OH \\ Br \\ \end{array}$

53. An organic compound having the molecular formula C₇H₈O is insoluble in NaHCO₃ solution but dissolves in aqueous NaOH. When

treated with bromine water the compound rapidly forms a precipitate having the molecular formula C₇H₅OBr₃. The organic compound is

- (1) o-cresol
- (2) m-cresol
- (3) p-cresol
- (4) anisole
- **54.** The product (Y) of the following sequence of reactions would be:

Me OH (i)
$$CHCl_3/NaOH/\Delta$$
 (X)
$$(ii) H_3O^+$$

$$\xrightarrow{Br_2/Fe} (Y)$$

$$(1) \qquad \begin{matrix} \text{CHO} \\ \text{Me} \\ \text{Br} \end{matrix}$$

$$(2) \qquad \begin{matrix} \text{Br} \\ \text{OH} \\ \text{CHO} \end{matrix}$$

55. In the reaction sequence

$$\left\langle \bigcirc \right\rangle - SO_3Na \xrightarrow{NaOH} A$$

$$CH_2I \longrightarrow HI$$

 $\xrightarrow{\text{CH}_3\text{I}} \text{B} \xrightarrow{\text{HI}} \text{C} + \text{D}$

A, B, C & D are

- (1) Sodium phenate, anisole, C₆H₅I, CH₃OH
- (2) Sodium phenate, phenitole, C_2H_5I , C_6H_5OH
- (3) Sodium phenate, anisole, C₆H₅OH, CH₃I
- (4) Sodium phenate, phenitole, C_6H_5I , C_2H_5OH

56. Observe the following reaction, and select the correct option:

$$\begin{array}{c}
OH \\
\hline
\begin{array}{c}
\text{dil. HNO}_3 \\
\end{array}
 \begin{array}{c}
\text{Y} + (Y) \xrightarrow{\text{Steam distillation}}
\end{array}
 \begin{array}{c}
\text{Y}
\end{array}$$

low boiling fraction:

(1)
$$NO_2$$
 NO_2 NO_2 (2) NO_2 NO_2 (3) NO_2 NO_2 NO_2 NO_2

57. Compare the properties of two isomeric products x and y formed in the following reaction

$$\underbrace{\begin{array}{c} OH \\ \hline \\ \hline \\ \hline \\ 2.H^{\oplus} \end{array}}_{1. \ CCl_4NaOH/\Delta} x>y$$

	Acid Strength	H ₂ O solubility	Volatility	Melting Point
(1)	y > x	y > x	x > y	y > x
(2)	x > y	x > y	y > x	x > y
(3)	y > x	x > y	y > x	y > x
(4)	x > y	y > x	x > y	y > x

58. Give the product of the following reactions: $Q - CH_2 - CH = \overset{*}{C}H_2$

$$\begin{array}{c} H_3C \\ & \longrightarrow \\ OH \\ CH_3 \\ \end{array}$$

$$\begin{array}{c} OH \\ CH_3 \\ \end{array}$$

$$\begin{array}{c} CH_2 - CH = \overset{*}{C}H_2 \\ \end{array}$$

(2)
$$H_3C$$
 CH_3
 $CH_2 - CH = CH_2$

(3) H_3C
 $CH_3 - C = CH_2$
 $CH_3 - CH_3$
 $CH_3 - CH_3$
 $CH_3 - CH_3$
 $CH_3 - CH_3$

59. Picric acid is:

OH

COOH
$$(1) \bigcirc NO_2 \qquad (2) \bigcirc OH$$

$$(3) \bigcirc OH \qquad (4) \bigcirc ON \qquad NO_2$$

$$NO_2 \qquad (4) \bigcirc ON \qquad NO_2$$

60. The major product of the following reaction is:

Br₂ (excess)

Br

SO₃H

OH

SO₃H

$$(1)$$
 (2)
 (3)
 (3)
 (3)
 (3)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (5)
 (4)
 (5)
 (4)
 (5)
 (4)
 (5)
 (5)
 (6)
 (7)
 (7)
 (7)
 (8)
 (8)
 (8)
 (9)
 (9)
 (1)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (3)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 $($

SO₃H

Integer Type Questions (61 to 75)

- 61. A sample of 3 mg of an unknown alcohol (ROH) is added to methyl magnesium iodide then 1.12 ml gas is evolved. What will be the molecular weight of alcohol is
- 62. How many types of
 Grignard reagent
 (RMgCl) can be used to
 prepare the following
 alcohol, by using
 different Ketones.

63.
$$O \longrightarrow CH_3$$
 $\xrightarrow{\text{LiAlH}_4} \text{Products}$

Total number of products in the above reaction:

64. Identify number of alcohols, those will show rearrangements during dehydration with conc. H₂SO₄.

- 65. Calculate total number of α-H present in alkene formed when 2, 3-dimethyl butanol react with concentrated H_2SO_4/Δ
- 66. 'X' is a smallest optically active alkanol. On dehydration it can form Y number of alkenes (including stereoisomers). On reaction with Lucas reagent it forms Z number of alkyl halides (including stereoisomers). Report your answer as \(\overline{Z} \overline{Y} \).
- 67. In the given reaction, OH $CH_3-CH-CH-CH_3 \xrightarrow{conc. H_2SO_4} Alkenes$ Ph

Total number of alkenes (Including stereo isomers) formed will be

68. The difference of molecular weights of the major products P and Q form in the following reactions is:

(i)
$$CH_3^+ CH_3I$$

$$CH_3^- CH_3 \rightarrow P \text{ (Organic product)}$$
(ii) $CH_3^- CH_3 CH_2OH$

 $\xrightarrow{\text{KOH}/\Delta} Q \text{ (Organic product)}$ **69.** Observe the following reaction sequence

Observe the following reaction sequence
$$\begin{array}{c}
OH & OH \\
Ph & \xrightarrow{\text{Conc. H}_2SO_4, \text{ (boil)}} (G) \\
& \xrightarrow{\text{LiAlH}_4} (H) \xrightarrow{\text{H}_3PO_4, \Delta} (I)
\end{array}$$

Calculate molecular mass [W] of product I and report your answer as N, where $N = W \div 3$.

70.
$$H_{3}C \xrightarrow{OH} \xrightarrow{H^{+} \atop -H_{2}O} [F] \xrightarrow{Br_{2}/CCl_{4}} \underbrace{C_{4}H_{8}Br_{2}}_{S \text{ such produc are possible}}$$

How many alkenes F are possible?

- 71. An alcohol (A), 0.22 g of the monohydric alcohol liberates 56 ml of CH₄ at STP on reaction with CH₃MgBr. Write the molecular weight of alcohol which satisfy these conditions.
- 72. How many carbonyl compounds will give secondary alcohol with molecular formula C₅H₁₂O after reduction with LiAlH₄?
- **73.** How many among the following compounds will give a 3° alcohol on reacting with excess of Grignard reagent followed by acid hydrolysis?

, HCHO,
$$C_2H_5CHO$$
, CH_3COCH_3 ,

RCOOC₂H₅

- **74.** Find the molecular weight of a sweet smelling compound which react with LAH to give only ethanol. (in g/mol)
- **75.** Total number of alkenes obtained by dehydration of 3,4-diethylhexan-2-ol in acidic medium?

CHAPTER

18

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

Single Option Correct Type Questions (01 to 60)

1.
$$CrO_3 \rightarrow P$$

$$(CH_3CO)_2O \rightarrow P$$

$$KMnO_4/HO^{-}/\Delta \rightarrow Q$$

The products P & Q are respectively

$$CH_2OH \qquad COOH$$

$$CHO \qquad CH_2OH$$

$$COOH \qquad COCH_3$$

$$CHO \qquad COCH_3$$

$$CHO \qquad COOH$$

$$COOH \qquad$$

The compound X can be:

2.

The correct increasing order of boiling points is:

- $(1) \quad II < IV < I < III$
- (2) I < II < III < IV
- $(3) \quad IV < II < I < III$
- $(4) \quad III < I < IV < II$
- 4. Aldehydes and ketones are distinguished by using:
 - (1) Lucas reagent
 - (2) Hinsberg reagent
 - (3) Tollen's reagent
 - (4) All of these

5.
$$CH \equiv CH \xrightarrow{\text{HgSO}_4} A \xrightarrow{\text{CH}_3\text{MgBr}} B$$

 $\xrightarrow{\text{Red P/Br}_2}$ C. Here C is:

- (1) CH₃CH (Br)CH₃
- (2) CH₃-CH₂-CH₂-Br
- (3) $CH_2=CH-Br$
- (4) Br-CH=CH-CH₃
- 6. After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is: Reaction I:

$$\begin{array}{c} O \\ H_3C \\ \hline CH_3 \\ \hline \begin{array}{c} Br_2(1.0 \text{ mol}) \\ \hline \text{aq NaOH} \end{array} \end{array}$$

$$(1.0 \text{ mol})$$

Reaction II:

$$H_3C$$
 CH_3
 $Br_2(1.0 \text{ mol})$
 CH_3COOH

$$H_3C$$
 CH_2Br
 H_3C
 CBr_3
 Br_3C
 CBr
 R
 CBr
 R
 CH_2Br
 CH_2Br
 CH_3C
 CBr
 CBr
 R
 CH_2Br
 CH_3C
 CH_3C

- (1) Reaction I: P and Reaction II: P
- (2) Reaction I : U, acetone and Reaction II : Q, acetone
- (3) Reaction I : T, U, acetone and Reaction II : P
- (4) Reaction I : R, acetone and Reaction II : S, acetone

7.
$$\begin{array}{c}
\text{(i) LiAlH}_{4} \rightarrow \text{Ph-CH}_{2}\text{NH}_{2} \text{ (P)} \\
\text{(ii) H}^{+} \rightarrow \text{Ph-NH}_{2} \text{ (Q)} \\
\hline
P_{4}O_{10} \rightarrow \text{Ph-CN} \text{ (R)}
\end{array}$$

Which of the following options is incorrect:

(1) P is 2-phenylethanamine.

- (2) Q is aniline, process is Hofmann's bromamide.
- (3) R is benzene carbonitrile, process is dehydration.
- (4) formation of P, involves reduction.
- 8. Observe the following reaction CH_3 —C— CH_2 —C— CH_3 \parallel \parallel \parallel

$$\xrightarrow{\text{HCN (excess)}} \xrightarrow{\text{H}_3\text{O}^{\oplus}/\Delta} \text{Products.}$$

The **correct** statement is

- (1) The product is a mixture of two compounds.
- (2) The product is optically active.
- (3) The product is a mixture of two chiral and one achiral stereoisomers.
- (4) The product is a mixture of four stereoisomers.
- 9. 1-Propanol and 2-Propanol can be best distinguished by:
 - (1) oxidation with alkaline KMnO₄ followed by reaction with Fehling solution.
 - (2) oxidation with acidic dichromate followed by reaction with Fehling solution.
 - (3) oxidation by heating with copper followed by reaction with Fehling solution.
 - (4) oxidation with concentrated H₂SO₄ followed by reaction with Fehling solution.
- **10**. In which of the following reaction ketone is formed:

(1)
$$CH_3 - CH_2 - OH \xrightarrow{KMnO_4/H} \xrightarrow{\oplus}$$

(2)
$$CH_3 - CH_2 - OH \xrightarrow{Cu/\Delta}$$

(3)
$$CH_3$$
— CH — OH — Cu/Δ
 CH_3
 CH_3
 CH_3
 CH_3

(4)
$$CH_3$$
 C CH_3 CH_3

- 11. Aldol condensation is the characteristic reaction of
 - (1) all aldehydes and ketones.
 - (2) only those aldehydes and ketones which contain α -hydrogen atoms.
 - (3) only those aldehydes and ketones which do not contain α -hydrogen atoms.
 - (4) only aromatic aldehydes and ketones.
- 12. CH_3 —CH— $CHO \xrightarrow{\text{dil NaOH}}$ Product, The

product of this reaction would be:

- **13**. Acetaldehyde reacts with nitromethane in the presence of dil. NaOH to give
 - (1) 1-Nitro-2-propanol
 - (2) 2-Nitro-1-propanol
 - (3) 2-Nitro-2-propanol
 - (4) None of these
- **14**. The Cannizzaro's reaction is not given by:
 - (1) C_6H_5CHO
- (2) HCHO
- (3) CH₃CHO
- (4) (CH₃)₃C–CHO
- 15. The only aldehyde which undergoes haloform reaction is
 - (1) Formaldehyde
 - (2) Acetaldehyde
 - (3) Benzaldehyde
 - (4) Propionaldehyde

- 16. An optically active compound reacts with hydroxylamine to form an oxime and also gives a positive haloform test. What is the structure of the compound?
 - (1) CH₃CH₂CH(CH₃)COCH₃
 - (2) (CH₃)₂CHCH₂COCH₃
 - (3) CH₃CH₂CH₂COCH₂CH₃
 - (4) (CH₃)₂CHCOCH₂CH₃
- 17. A compound with molecular formula, C₄H₈O gives a positive haloform test and a 2,4-DNP derivative. The compound is
 - (1) CH₃CH₂CH₂CHO
 - (2) CH₃COCH₂CH₃
 - (3) (CH₃)₂CHCHO
 - (4) All the above
- **18**. Tollen's reagent is not reduced by
 - (1) Formic acid
- (2) Acetaldehyde
- (3) Benzaldehyde
- (4) Acetic acid
- 19. Oxidation of compound X gives a product which reacts with phenylhydrazine but does not give a silver mirror test. Possible structure for X is:
 - (1) CH₃CHO
 - (2) CH₃CH₂OH
 - (3) (CH₃)₂CHOH
 - (4) CH₃CH₂CH₂OH
- **20**. The acid D obtained through the following sequence of reactions is:

$$C_2H_5Br \xrightarrow{Alc. KOH} A \xrightarrow{Br_2} B$$

$$\xrightarrow{\text{KCN}} C \xrightarrow{\text{H}_3\text{O}^+} D$$

- (1) Succinic acid
- (2) Malonic acid
- (3) Maleic acid
- (4) Oxalic acid
- 21. In which of the following reaction the final product is neither an acid nor an acid salt.
 - (1) PhCHO $\xrightarrow{\text{Tollen's reagent}}$
 - (2) $CH_3CH_2OH \xrightarrow{KMnO_4/\bar{O}H} \rightarrow$
 - (3) PhCHO—Fehling solution
 - (4) $PhCH_2OH \xrightarrow{K_2Cr_2O_7/H^+} \rightarrow$

PARAKRAM JEE MAIN BOOKLET

- **22**. Which of the following will not undergo Hell-Volhard Zelinsky (HVZ) reaction?
 - (1) HCOOH
 - (2) CH₃COOH
 - (3) CH₃CH₂COOH
 - (4) CH₃CHBrCOOH
- **23**. The product of the following reaction is:

COOH
$$(i) NH_3 \rightarrow P_2O_5$$

$$(ii) \Delta \rightarrow P_2O_5$$

$$(1) \qquad (2) \qquad CN$$

$$(2) \qquad COOH$$

$$(3) \qquad (4) \qquad NH_2$$

24. (A) $\frac{(1) O_3}{(2) Zn, H_2O}$ (B) $\frac{\text{NaOH}}{\Delta}$

The reactant (A) will be:

$$(1) \qquad \qquad (2) \qquad \qquad CH_2$$

$$(3) \qquad \qquad (4) \qquad \qquad (3)$$

25. Identify product (B) in the following reaction sequence:

OH (2)
$$H_2O/H^{\oplus}$$

$$CHI_3 + (A) \xrightarrow{SOCl_2} (B)$$

(1)
$$C_6H_5-C-CH_3$$
 | O O (2) $C_6H_5-C-CD_3$ | O O (3) C_6H_5-C-C1 | O O

$$(4) \quad C_6H_5-CH_2-C-C1$$

$$0$$

26. An optically active compound (X) has molecular formula $C_4H_8O_3$. It evolves CO_2 with NaHCO₃. (X) reacts with LiAlH₄ to give an achiral compound. Structure of (X) is.

27. Give the order of ease of the esterification of the following acid

$$O_2N$$
—COOH
$$(II)$$

$$COOH$$

$$(III)$$

$$H_3C$$
—COOH
$$(IIII)$$

$$MeO$$
—COOH

- (IV)
 (1) I > II > III > IV
- $(2) \quad IV > III > II > I$
- $(3) \quad II > I > IV > III$
- $(4) \quad IV > II > III > I$

- **28**. Mixture of C₆H₅CHO and HCHO is treated with NaOH then Cannizzaro's reaction involves:
 - (1) Oxidation of HCHO
 - (2) Reduction of HCHO
 - (3) Oxidation of C₆H₅CHO
 - (4) Reduction and oxidation of C₆H₅CHO
- **29**. **Assertion:** Acetophenone and benzophenone can be distinguished by iodoform test.

Reason: Acetophenone and benzophenone both are carbonyl compounds.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **30**. **Assertion:** Benzaldehyde undergoes disproportionation reaction in basic medium.

Reason: Aldehydes which do not have α -hydrogen undergo Cannizzaro reaction (i.e. disproportionation reaction).

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **31**. **Assertion:** Carboxylic acids have a carbonyl group but they do not give the test of carbonyl group.

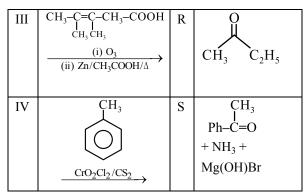
Reason: Due to resonance, the double bond character of carbonyl group is greatly reduced.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **32**. Match List I with List II and select the correct answer using the code given below the lists.

	List I		List II
Ι	$ \begin{array}{c} \text{Ph-CHO} \\ \frac{\text{CrO}_2\text{Cl}_2}{\text{CS}_2, \Delta} \end{array} $	P	Perkin's Reaction
II	$ \begin{array}{c} \text{Ph-CHO} \\ $	Q	Etard Reaction
III	$\xrightarrow{\text{Al (OEt)}_3}$	R	Aldol Reaction
IV	$ \begin{array}{c} \text{Ph-COCH}_{3} \\ \hline \text{NaOH} \\ \end{array} $	S	Tischenko reaction

(1) I - Q; II - P; III - S; IV - R

(2) I - R; II - Q; III - S; IV - P


(3) I - P; II - S; III - Q; IV - R

(4) I - S ; II - R ; III - Q ; IV - P

33. Match List I with List II and select the correct answer using the code given below the lists.

	List I		List II
Ι	2CH ₃ COOH Ca(OH) ₂	P	$\circ \!$
	$\xrightarrow{\frac{\operatorname{Ca}(\operatorname{OH})_2}{\Delta}}$		CH ₃ CH ₃
II	PhCN + CH ₃ MgBr	Q	СНО 1
	$\xrightarrow{\text{Ether}\atop \text{H}_2\text{O}} \rightarrow$		

PARAKRAM JEE MAIN BOOKLET

- (1) I Q ; II P ; III S ; IV R
- (2) I P; II S; III P; IV Q
- (3) I P ; II S ; III Q ; IV R
- (4) I S ; II R ; III Q ; IV P
- **34**. Which one of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid?
 - (1) Phenol
- (2) Benzoic acid
- (3) Butanal
- (4) Benzaldehyde
- 35. Reaction of cyclohexanone with dimethylamine in the presence of catalytic amount of an acid forms a compound if water during the reaction is continuously removed. The compound formed is generally known as
 - (1) Amine
- (2) Imine
- (3) Enamine
- (4) Schiff's base
- 36. In the following sequence of reactions,

$$CH_3CH_2OH \xrightarrow{Red P+1_2} A \xrightarrow{Mg} B$$

$$HCHO \qquad H2O$$

The compound 'D' is

- (1) n-propyl alcohol
- (2) propanal
- (3) butanal
- (4) n-butyl alcohol
- **37**. In Cannizzaro reaction given below

2PhCHO
$$\xrightarrow{\text{OH}}$$
 PhCH₂OH + PhCO₂; the slowest step is:

(1) the transfer of hydride to the carbonyl group

- (2) the abstraction of proton from the carboxylic group
- (3) the deprotonation of PhCH₂OH
- (4) the attack of OH at the carboxyl group
- **38**. Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH. The mixture of the products contains sodium trichloroacetate ion and another compound. The other compound is:
 - (1) 2, 2, 2–Trichloroethanol
 - (2) Trichloromethanol
 - (3) 2, 2, 2–Trichloropropanol
 - (4) Chloroform
- 39. Ozonolysis of an organic compound 'A' produces acetone and propionaldehyde in equimolar mixture. Identify 'A' from the following compounds:
 - (1) 1-Pentene
 - (2) 2-Pentene
 - (3) 2-Methyl-2-pentene
 - (4) 2-Methyl-1-pentene
- **40**. Iodoform can be prepared from all except :
 - (1) Ethyl methyl ketone
 - (2) Isopropyl alcohol
 - (3) 3-Methyl-2-butanone
 - (4) Isobutyl alcohol
- 41. On vigorous oxidation by permangnate solution $(CH_3)_2C = CHCH_2CHO$ gives
 - (1) (CH₃)₂CO and OHCCH₂CHO
 - (2) (CH₃)₂C CHCH₂CHO OH OH
 - (3) (CH₃)₂CO and OHCCH₂COOH
 - (4) (CH₃)₂CO and CH₂(COOH)₂
- **42**. End product of the following reaction is:

$$CH_3CH_2COOH \xrightarrow{Cl_2} \xrightarrow{alcoholic KOH} \xrightarrow{alcoholic KOH}$$

- (1) CH₃CHCOOH OH
- (2) CH₂CH₂COOH OH
- (3) $CH_2 = CHCOOH$
- (4) CH₂CHCOOH I I Cl OH

43. p-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form, the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is:

44. Compound (A), C₈H₉Br, gives a pale-yellow precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), C₈H₆O₄. (B) easily forms anhydride on heating. Identify the compound (A).

(1)
$$CH_2Br$$
 CH_3
(2) CH_3
 CH_2Br
(3) CH_3
 CH_2Br
(4) CH_3
 CH_2Br

45. In the reaction sequence

$$2CH_3CHO \xrightarrow{OH^{\Gamma}} A \xrightarrow{\Delta} B;$$

the product B is:

- (1) CH₃-CH₂-CH₂-CH₂-OH
- (2) CH₃-CH=CH-CHO
- (3) CH₃-CH₂-CH₂-CH₃

- **46**. The correct statement about the synthesis of erythritol (C(CH₂OH)₄) used in the preparation of PETN is:
 - (1) The synthesis requires two aldol condensations and two Cannizzaro reactions.
 - (2) Alpha hydrogens of ethanol and methanol are involved in this reaction.
 - (3) The synthesis requires four aldol condensations between methanol and ethanol.
 - (4) The synthesis requires three aldol condensations and one Cannizzaro reaction.

47. In the following reaction sequence:

$$\left(\operatorname{C}_{3}\overset{\operatorname{I}}{\operatorname{H}_{6}}\operatorname{Cl}_{2}\right) \xrightarrow{\quad \operatorname{KOH} \ \operatorname{aq} \quad} \operatorname{II} \xrightarrow{\quad \operatorname{i} \ \operatorname{CH}_{3}\operatorname{M}g\operatorname{Br} \quad} \operatorname{ii} \ \operatorname{H}_{2}\operatorname{O/H}^{+} \xrightarrow{\quad}$$

III
$$\xrightarrow{\text{Anhy.ZnCl}_2+\text{Conc.HCl}} \rightarrow$$

gives turbidity immediately. The compound I is:

48. A compound of molecular formula C₈H₈O₂ reacts with acetophenone to form a single cross-aldol product in the presence of base. The same compound on reaction with conc. NaOH forms a derivative of benzyl alcohol as one of the products. The structure of the compound is:

 $\xrightarrow{\text{i NaOH/100}^{\text{o}}\text{C}} \text{Major Product is:}$

49.

- **50**. In conversion of 2-butanone to propanoic acid which reagent is used.
 - (1) NaOH, NaI/H[⊕]
 - (2) Fehling solution
 - (3) NaOH, I_2 / H^{\oplus}
 - (4) Tollen's reagent

51. Cyclohexene on ozonolysis followed by reaction with zinc dust and water gives compound E. Compound E on further treatment with aqueous KOH followed by heating yields compound F. Compound F is:

52. The compound that undergoes decarboxlylation most readily under mild condition is

53. Which of the following compound takes maximum time for hydrolysis reaction.

54. List the following esters in order of decreasing reactivity in the second step of a nucleophilic acyl substitution reaction.

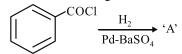
- (1) IV > I > III > II
- (2) IV > III > I > II
- $(3) \quad III > IV > I > II$
- $(4) \quad II > I > III > IV$

$$\xrightarrow{P_4O_{10}} P \xrightarrow{MeMgBr} Q \xrightarrow{i Ca OH_2 + I_2} R,$$

compound R is:

$$(1) \bigcirc \begin{matrix} O \\ \parallel \\ C - CH_3 \end{matrix}$$

$$(3) \bigcirc C \bigcirc C$$


PARAKRAM JEE MAIN BOOKLET

- **56**. Methyl acetate and ethyl acetate can be distinguished by :
 - (1) hot alkaline KMnO₄
 - (2) Neutral FeCl₃
 - (3) Iodoform test
 - (4) All of these
- 57. If heavy water is taken as solvent instead of normal water while performing Cannizaro reaction, the products of the reaction are
 - (1) RCOO-+RCH2OH
 - (2) $RCOO^- + RCH_2OD$
 - (3) $RCOOD + RCD_2OD$
 - (4) $RCOO^- + RCD_2OD$
- **58**. Clemmensen reduction of a ketone is carried out in the presence of which of the following?
 - (1) Glycol with KOH
 - (2) Zn-Hg with HCl
 - (3) LiAlH₄
 - (4) H₂ and Pt as catalyst
- **59**. The order of reactivity of phenyl magnesium bromide (PhMgBr) with the following compounds:

$$CH_3$$
 $C = O$, CH_3 $C = O$ and CH_3 $C = O$

 $(1) \quad |||| > ||| > 1$

- (2) II > I > III
- (3) I > III > II
- (4) I > II > III
- **60**. Consider the following reaction:

The product 'A' is:

- (1) C_6H_5CHO
- (2) C₆H₅OH
- (3) C₆H₅COCH₃
- (4) C₆H₅Cl

Integer Type Questions (61 to 75)

61. How many of the following reactions represent the correct major product.

(I)
$$CHCl_3 + CH_3COCH_3 \xrightarrow{KOH}$$

$$CH_3 \xrightarrow{C} CCl_3 (Chloretone - hypnotic)$$

(II) PhNH₂ + CHCl₃ + KOH

→ PhNC (bad smell)

(III) PhOH + CHCl₃ + NaOH

$$\longrightarrow$$
 Ph - O - CH₃

(IV) CCl₃CHO + 2PhCl

$$\xrightarrow{\text{conc. H}_2\text{SO}_4}$$
 CCl₃CH C₆H₄Cl $_2$

62. The molecular mass of the major product H in the given reaction sequence is

$$CH_3CH_2COCH_3 \xrightarrow{-CN} G \xrightarrow{95\%H_2SO_4} Heat \to H$$

63.
$$C_3H_8O \xrightarrow{O} C_3H_6O \xrightarrow{I_2/N_8OH} C_3H_6O$$

In this reaction the molar mass of compound [Y] is:

- **64**. How many of the following does not give benzoic acid salt on oxidation with hot alkaline KMnO₄.
 - (I) Ph-CH₃
 - (II) Ph-CH=CH-CH₃
 - (III) Ph–C \equiv C–CH₃
 - (IV) Ph-C(CH₃)₃
- 65. If 3-hexanone is reacted with NaBH₄ followed by hydrolysis with D₂O, the molecular mass of the product will be:

66. (i) Conc.
$$KMnO_4/H^+$$

The number of oxygen atom in the major product 'P' is:

67.
$$\underbrace{\frac{\text{KMnO}_4/\text{OH}}{\text{IO}_4}}_{\text{KMnO}_4/\text{OH}}(x)$$

The molecular mass of the product (Z) in the above reaction is:

68. How many of the following gives haloform reaction:

CH₃OH, CH₃CH₂OH, HCOOH, CH₃COOH, CH₃COOCH₃, CH₃COOC₂H₅, HCHO, CH₃COCH₃

69. The molecular mass of the final product (C) in the following reaction is:

$$H \searrow C \swarrow_X^X + KCN \longrightarrow A$$

$$\xrightarrow{\text{H}_3\text{O}^+}$$
 B $\xrightarrow{\Delta}$ C

70. The total number of carboxylic acid groups in the product P is

$$\begin{array}{c|c} O & O \\ \hline \\ O & \xrightarrow{\begin{array}{c} 1. \text{ H}_3O^+, \, \varDelta \\ \hline 2. \, O_3 \\ \end{array}} P \\ O & \xrightarrow{\begin{array}{c} 1. \text{ H}_3O_+ \\ \hline 2. \, O_3 \\ \hline 3. \text{ H}_2O_2 \end{array}} P$$

- 71. Cyclohexene is treated with cold KMnO₄ followed by lead tetra acetate to give (A) when (A) is heated with Ba(OH)₂. The molecular mass of the final product obtained will be:
- 72. In a set of reactions acetic acid yielded a product D:

$$CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{Benzene} B$$

$$Anhy.AlCl_3$$

$$\xrightarrow{\text{HCN}} C \xrightarrow{\text{H}_3\text{O}^+} D$$

Total number of chiral centre in the final major product (D) is:

73. How many of the following reactions will produce carboxylic acid, as their end product.

(I)
$$\bigcirc$$
 + CH₃-C-Cl $\xrightarrow{\text{AlCl}_3}$ $\xrightarrow{\text{I}_2/\text{OH}^-}$ $\xrightarrow{\text{H}^{\oplus}}$

(II)
$$\xrightarrow{\text{HI}} \xrightarrow{\text{NaCN}} \xrightarrow{\text{H}_3O^{\oplus}}$$

(III) $\xrightarrow{\text{Cl}} \xrightarrow{\text{Alc. KOH}/\Delta} \xrightarrow{\text{O}_3} \xrightarrow{\text{H}_2O/\Delta}$

(IV) $\xrightarrow{\text{CH}_3\text{Cl}} \xrightarrow{\text{Cl}_2/\text{hv}} \xrightarrow{\text{excess}}$
 $\xrightarrow{\text{NaOH}} \xrightarrow{\text{H}^{\oplus}} \xrightarrow{\text{excess}}$

74. How many of the following reactions will give 3-pentanone.

(I)
$$CH_3 - CH_2COO_2 Ca \xrightarrow{\Delta}$$

(II)
$$CH_3 - CH_2 - C \equiv N$$

$$\xrightarrow{\begin{array}{c} 1 \text{ CH}_3\text{-CH}_2\text{-MgBr} \\ 2 \text{ H}_3\text{O}^+ \end{array}}$$

(III)
$$CH_3 - C - CH_2 - CH_2 - C - OC_2H_5$$

$$\frac{1 H_2O/H^+}{2 NaOH + CaO}$$

(IV)
$$CH_3-CH_2-C-CH-C-OH \xrightarrow{\Delta}$$

 CH_3

75. In how many of following reactions the end product is hydrocarbon?

(I) OH
$$\xrightarrow{i \Delta}$$
 OH

(II)
$$CH_3COOAg \xrightarrow{Br_2/CCI_4}$$

(III)
$$Ph - COOH \xrightarrow{NaOH} CaO, \Delta$$

(IV)
$$CH_3$$
 CH_3 CH_5OH CH_3

19

AMINES

Single Option Correct Type Questions (01 to 60)

1. Final product of the following sequence of reactions would be:

$$\begin{array}{c}
O \\
\hline
& NH_2OH \\
\hline
& [A] \\
\hline
& [B] \\
\hline
& LiAlH_4 \\
& Product
\end{array}$$

$$\begin{array}{ccc}
(3) & H_2N' \\
& & \\
(4) & & \\
& & \\
\end{array}$$

2. $CH_3CH_2Cl \xrightarrow{NaCN} X \xrightarrow{Ni/H_2} Y \xrightarrow{Acetic} Z$

Z in the above reaction sequence is:

- (1) CH₃CH₂CH₂NHCOCH₃
- (2) CH₃CH₂CH₂NH₂
- (3) CH₃CH₂CH₂CONHCH₂
- (4) CH₃CH₂CH₂CONHCOCH₃
- **3**. Which of the following is most basic?

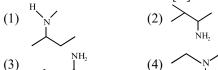
(1)
$$CH_3O \longrightarrow NH_2$$

(2)
$$O_2N - \bigcirc NH_2$$

(3)
$$Cl \longrightarrow NH$$

(4)
$$\langle \bigcirc \rangle$$
 NH₂

4. The order of nucleophilicity among


- $(1) \quad I > II > IV > III$
- $(2) \quad II > III > I > IV$
- $(3) \quad II > III > IV > I$
- $(4) \quad III > IV > I > II$
- 5. A mixture containing primary, secondary and tertiary amine is treated with diethyl oxalate. Choose the correct statement
 - (1) The distillate of the mixture after treatment mainly contains 1° amine
 - (2) 3° amine do not react with diethyl oxalate
 - (3) This is Hinsberg method of separating 1°, 2° & 3° amines
 - (4) 3° amine is removed by filtration
- 6. End product of the given reaction sequence is:

$$NH_{2} \xrightarrow{(i) CHCl_{3}/KOH} \xrightarrow{(ii) H_{2}/Pd} \xrightarrow{100^{9}C,}$$

$$High pressure$$

$$NH-CH_{3} \qquad (2) \qquad CH_{2}-$$

- (3) \sim NH—CH₃
- (4) NH
- 7. An optically active compound [A] $C_5H_{13}N$ reacts with alkaline CHCl₃ to give an optically active. compound [B]. [A] also reacts with nitrous acid to give an optically inactive alcohol [C] $(C_5H_{11}OH)$ as the major product. What would be the structure of [A]?

8. Methyl orange (an acid-base indicator) can be prepared by following sequence of reactions

$$HO_{3}S - \underbrace{\hspace{1cm} \begin{array}{c} (i) \operatorname{NaNO_{2}/HCl} \\ \text{0°C} \end{array}} \xrightarrow{\hspace{1cm} (ii) \begin{array}{c} Me \\ \text{0°C} \end{array}} Methyl \ orange$$

What would be the structure of methyl orange?

(1)
$$HO_3S$$
 $N=N$ $N=N$ $N=N$

(3)
$$HO_3S$$
 $N=N$ $N=N$ Me Me Me Me $N=N$

- 9. A nitrogenous compound (X) is treated with HNO₂, and the mixture is then made alkaline with dilute NaOH to give a blue colouration. Among the following, which one can be the compound (X)?
 - (1) CH₃CH₂NH₂
- (2) CH₃CH₂NO₂
- (3) CH₃CH₂ONO
- (4) (CH₃)₂CHNO₂
- 10. An amine reacts with C₆H₅SO₂Cl and the product is soluble in alkali, amine is:
 - (1) 1° amine
- (2) 2° amine
- (3) 3° amine
- (4) All of these
- 11. What is the end product in the following sequence of reactions?

$$C_2H_5NH_2 \xrightarrow{\quad HNO_2\quad} A \xrightarrow{\quad PCl_5\quad} B \xrightarrow{\quad NH_3\quad} C$$

- (1) Ethylcyanide
- (2) Ethylamine
- (3) Methylamine
- (4) Acetamide
- **12. STATEMENT-1:** Aryl amines cannot be prepared by Gabriel's phthalimide synthesis. and

STATEMENT-2: Aromatic halides do not give S_N 2 reactions.

- (1) Both statement 1 & 2 are correct.
- (2) Both statement 1 & 2 are incorrect.

- (3) Statement 1 is correct but statement 2 is incorrect.
- (4) Statement 2 is correct but statement 1 is incorrect.
- **13**. **STATEMENT-1:** Pyridine is more basic than pyrrole. and

STATEMENT-2: In pyridine nitrogen is sp² hybridized whereas in pyrrole N is sp³ hybridized

- (1) Both statement 1 & 2 are correct.
- (2) Both statement 1 & 2 are incorrect.
- (3) Statement 1 is correct but statement 2 is incorrect.
- (4) Statement 2 is correct but statement 1 is incorrect.
- **14. STATEMENT-1:** Aniline on reaction with NaNO₂/HCl at 0°C followed by coupling with β-naphthol gives a dark blue coloured precipitate. and

STATEMENT-2: The colour of the compound formed in the reaction of aniline with NaNO₂/HCl at 0°C followed by coupling with β-naphthol is due to the extended conjugation.

- (1) Both statement 1 & 2 are correct.
- (2) Both statement 1 & 2 are incorrect.
- (3) Statement 1 is correct but statement 2 is incorrect.
- (4) Statement 2 is correct but statement 1 is incorrect.
- 15. The major product of the following reaction is:

(1)
$$\begin{array}{c}
NH & \xrightarrow{(i) \text{ KOH}} \\
C & O \\
N - CH_2 & Br
\end{array}$$

PARAKRAM JEE MAIN BOOKLET

16. The increasing order of reactivity of the following compounds towards reaction with alkyl halides directly is:

- (1) (II) < (I) < (III) < (IV)
- (2) (II) < (I) < (IV) < (III)
- (3) (I) < (II) < (III) < (IV)
- (4) (III) < (III) < (IV) < (II)
- 17. Which of the following sequence is best suited to convert benzene to 3-chloro aniline?
 - (1) Nitration, reduction, chlorination
 - (2) Chlorination, nitration, reduction
 - (3) Nitration, chlorination, reduction
 - (4) Nitration, reduction, acetylation, chlorination, hydrolysis

18.
$$(A) \xrightarrow{\text{CH,COCl/reflux}} (B),$$

Identify the major product (B)

(1) COCH₃
COCH₃
(2) COCH₃
(3) COCH₃
(4) Br
NH₂
COCH₃
(i) Br₂/NaOH
(ii) H₃O¹/
$$\Delta$$
Product.

NHCOCH₃

The major product obtained is

NH,

$$(1) \bigcirc \bigvee_{NH}^{O} \qquad (2) \bigcirc \bigvee_{NH}^{NH}$$

$$(3) \bigcirc \bigvee_{NH}^{NH} \qquad (4) \bigcirc \bigvee_{NH}^{NH}$$

20. The final product C, obtained in this reaction NH_2

$$Ac_{2}O \rightarrow A \xrightarrow{Br_{2}} B \xrightarrow{H_{2}O} C$$

$$CH_{3} \xrightarrow{NHCOCH_{3}} NH_{2} \xrightarrow{COCH_{3}} C$$

$$\begin{array}{cccc} CH_3 & CH_3 \\ COCH_3 & NH_2 \\ Br & (4) & Br \\ CH_3 & CH_3 \end{array}$$

- 21. An aromatic amine (X) was treated with alcoholic potash and another compound (Y) then foul smelling gas C₆H₅NC is formed. The compound (Y) was formed by the reaction of compound (Z) with Cl₂ in the presence of slaked lime. The compound (Z) is:
 - (1) CHCl₃

(1)

- (2) CH₃COCH₃
- (3) CH₃OH
- (4) C₆H₅NH₂

- **22.** p-Chloro aniline and anilinium chloride can be distinguished by:
 - (1) Sandmeyer reaction
 - (2) Carbylamine reaction
 - (3) Hinsberg's reaction
 - (4) AgNO₃
- **23.** Hoffmann bromamide degradation reaction is shown by
 - (1) ArNH₂
- (2) ArCONH₂
- (3) ArNO₂
- (4) ArCH₂NH₂
- **24.** The best reagent for converting, 2-phenylpropanamide into 1-phenylethanamine is
 - (1) Excess H₂/Pt
- (2) NaOH/Br₂
- (3) NaBH₄/methanol
- (4) LiAlH₄/ether
- 25. In order to prepare a 1° amine from an alkyl halide with simultaneous addition of one CH₂ group in the carbon chain, the reagent used as source of nitrogen is
 - (1) Sodium amide, NaNH₂
 - (2) Sodium azide, NaN₃
 - (3) Potassium cyanide, KCN
 - (4) Potassium phthalimide, C₆H₄(CO)₂N-K⁺
- **26.** Best method for preparing primary amines from alkyl halides without changing the number of carbon atoms in the chain is:
 - (1) Hoffmann Bromamide reaction
 - (2) Gabriel phthalimide synthesis
 - (3) Sandmeyer reaction
 - (4) Reaction with NH₃
- 27. The product formed by the reaction of acetamide with Br₂ in presence of NaOH is
 - (1) CH₃CN
- (2) CH₃CHO
- (3) CH₃CH₂CHO
- (4) CH₃NH₂
- **28.** In the reaction, the product (C) is:

$$C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} (A) \xrightarrow{CuCN} (B) \xrightarrow{H^+/H_2O} (C)$$

- (1) $C_6H_5CH_2NH_2$
- (2) C₆H₅COOH
- (3) C₆H₅OH
- (4) C₆H₅CH₂OH
- **29.** Benzenediazonium chloride can be converted into benzene on treatment with
 - (1) H_3PO_3
- (2) H_3PO_4
- (3) H₃PO₂
- (4) HPO₃

30. $C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} X \xrightarrow{H_2O} Y$, the

product Y is:

- (1) Benzenediazonium chloride
- (2) Nitrobenzene
- (3) Phenol
- (4) Cresol

 $_{
m I}^{
m NH_2}$

31.
$$(i) Br_2/H_2O \longrightarrow (A)$$
. The major (iii) HRE /A

product (A) is:

$$(1) \bigcirc Br$$

$$(2) F \bigcirc Br$$

$$(3) F \bigcirc F$$

$$(4) Br \bigcirc F$$

$$GI$$

32. Diazonium salt + Cu + HCl
$$\rightarrow$$
 ; the

reaction is known as:

- (1) Chlorination
- (2) Sandmeyer's reaction
- (3) Perkin reaction
- (4) Gattermann reaction

33.
$$(i) \frac{\text{Br}_2/\text{Fe}}{(ii) \frac{\text{H}_2/\text{Fe}}{(ij) \frac{\text{H}_2/\text{Pt}}{(ij) \frac{\text{NaNO}_2/\text{HCl }0-5^{\circ}\text{C}}{(ii) \frac{\text{Cu}_2\text{Cl}_2/\text{HCl}}{(ij) \frac{\text{Cu}_2\text{Cl}_2/\text{HCl}}{(ij) \frac{\text{NaNO}_2/\text{HCl }0-5^{\circ}\text{C}}}} + (B) \cdot (B)$$

The product (B) is:

$$(1) \bigcirc \qquad \qquad (2) \bigcirc \qquad \qquad (3) \bigcirc \qquad \qquad (4) \bigcirc \qquad \qquad (4) \bigcirc \qquad \qquad (5)$$

product). Major product X will be:

OH OH OH
$$N_2Ph$$
 N_2Ph N_2Ph N_2Ph N_2Ph OH

$$(3) \bigvee_{NH_2} OH$$

35.
$$\stackrel{\text{OH}}{\longleftrightarrow}$$
 + Ph - $\stackrel{+}{N_2}$ $\stackrel{\text{(pH=9-11)}}{\longleftrightarrow}$ X (major

product). Major product X will be:

OH
$$(1) \bigvee_{NH_2}^{OH} N_2Ph$$

$$(2) \bigvee_{NH_2}^{N_2Ph} N_2Ph$$

$$(3) \bigvee_{NH_3}^{OH} OH$$

$$(4) \bigvee_{N,Ph}^{OH}$$

36. Match List I and List II. Select the correct answer using the codes given below the list:

	List-I		List-II
I	$RNH_2 + CHCl_3 + KOH(alc) \xrightarrow{\Delta}$	P	Schotten- Baumann reaction
II	$C_6H_5N_2Cl \xrightarrow{CuBr/HBr} \Delta$	Q	Coupling reaction
III	$\begin{array}{c} \text{C}_6\text{H}_5\text{NH}_2 + \text{C}_6\text{H}_5\text{COCl} \\ \xrightarrow{\text{NaOH(aq).}} \end{array}$	R	Carbylamine reaction
IV	$ \begin{array}{c} C_6H_5N_2Cl + C_6H_5OH \\ \xrightarrow{pH9-10} \end{array} $	S	Sandmeyer reaction

- (1) I-Q; II-P; III-S; IV-R
- (2) I-P; II-Q; III-R; IV-S
- (3) I-R; II-S; III-P; IV-Q
- (4) I-S; II-R; III-Q; IV-P
- **37.** Match the reactions given in List I with the statements given in List II. Select the correct answer using the codes given below the list:

	List-I		List-II
I	Ammonolysis	P	Amine with lesser
			number of carbon
			atoms
II	Gabriel	Q	Detection test for
	phthalimide		primary amines
	synthesis		
III	Hoffmann	R	Reaction of
	Bromamide		phthalimide with
	reaction		KOH and R-X
IV	Carbylamine	S	Reaction of alkyl
	reaction		halide with NH ₃

- (1) I-P; II-Q; III-R; IV-S
- (2) I-S; II-R; III-P; IV-Q
- (3) I-Q; II-P; III-S; IV-R
- (4) I-R; II-S; III-P; IV-Q
- **38.** Match the compounds give in List-I with the items given in List-II. Select the correct answer using the codes given below the list:

	List-I		List-II
I	$C_6H_6 + CH_3CH(Cl)$	P	Diazocoupling reaction
	-CH ₃ anhydrous AlCl ₃	\rightarrow	
II	$C_6H_5NH_2 + C_6H_5$	Q	Friedel-Craft
	$N_2Cl \xrightarrow{\text{di. HCl}}$		reaction
III	$C_6H_6 + C_6H_5$	R	Reimer-
	COCl anhydrous AlCl ₃		Tiemann reaction
IV	$C_6H_5OH \xrightarrow{CHCl_3+ KOH}$	S	Product is
	0 3		Isopropyl
			benzene
		T	Electrophilic
			substitution
			reaction

- (1) I-S, T; II-R, S; III-P, R; IV-S, T
- (2) I-P, T; II-Q, T; III-Q, R, T; IV-P, S
- (3) I-R, S, T; II-Q, R; III-P, S; IV-S, T
- (4) I-Q, S, T; II-P, T; III-Q, T; IV-R, T

AMINES W

AMINES AMINES

39.
$$(P) \xrightarrow{B_{12} \atop KOH} (Q) \xrightarrow{CH_3COCl} (R) \xrightarrow{(i)B_{12}/CH_3COOH}$$

$$NH_2 \longleftrightarrow$$

The reactant (P) is:

$$(1) \bigcirc \qquad \qquad (2) \bigcirc \qquad \qquad (NH_2)$$

$$(3) \bigcirc \qquad \qquad (4) \bigcirc \qquad \qquad (4)$$

40. Aniline when diazotized in cold and then treated with dimethyl aniline gives a coloured product. Its structure would be:

- **41.** In the diazotisation of aniline with sodium nitrite and hydrochloric acid, an excess of hydrochloric acid is used primarily to:
 - (1) Suppress the concentration of free aniline available for coupling
 - (2) Suppress hydrolysis of phenol
 - (3) Insure a stoichiometric amount of nitrous acid
 - (4) Neutralize the base liberated

42. The structure of the final product (Y) formed in the following reaction sequence is:

43. The major product Y in the following sequence of reaction is:

Aniline

NH,

$$(3) \begin{tabular}{lll} \hline (ii) $NaNO_2/HCl,273K$ \\ \hline (iii) $CuCN/KCN$ \\ \hline (iii) $CuCN/KCN$ \\ \hline (X) \hline (ii) $DBAL-H$ \\ (iii) H_2O \\ \hline (CH_2-NH_2) \\ \hline (COOH) \\ \hline (CO-NH_2) \\ \hline (A) \begin{tabular}{lll} \hline (A) & (A) & (A) & (A) \\ \hline (B) & (A) & (A) & (A) \\ \hline (B) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A) & (A) & (A) \\ \hline (CO-NH_2) & (A) & (A)$$

44. Assertion: In strongly acidic solutions, aniline becomes more reactive towards electrophilic reagents.

Reason: The amino group being completely protonated in strongly acidic solution, the lone pair of electrons on the nitrogen is no longer available for resonance.

- (1) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (2) Both Assertion and Reason are true but Reason is not correct explanation of Assertion.
- (3) Assertion is true but Reason is false.
- (4) Assertion is false but Reason is true.

45.
$$\bigcirc \bigcap_{C - NH_2}^{O} + \bigcirc \bigcap_{C - NH_2 under}^{O}$$

Hoffmann conditions will give:

(1)
$$\bigcup_{D}^{NH_2} + \bigcup_{NH_2}^{15}$$

(2)
$$OD = NH_2 + OD = NH$$

$$(3) \bigcup_{D}^{15} NH_2 + \bigcup_{D}^{NH_2}$$

$$(4) \bigcirc \qquad \qquad \downarrow^{15} \qquad \qquad \downarrow^{NH_2} \qquad \qquad \downarrow^{NH_2}$$

46. Amongst the compounds given, the one that would form a brilliant colored dye on treatment with NaNO₂ in dilute HCl followed by addition to an alkaline solution of β -naphthol is:

(1)
$$N(CH_3)_2$$

47. The product(s) of the following reaction sequence is (are):

48. The major product of the following reaction is:

(1)
$$N=N$$

(2)
$$N_2Cl$$

$$(3) \qquad \begin{array}{c} N=N \\ N=N \\ \end{array}$$

- **49.** When primary amine reacts with chloroform in ethanolic KOH then the product is:
 - (1) An isocyanide
- (2) An aldehyde
- (3) A cyanide
- (4) An alcohol
- **50.** The reaction of chloroform with alcoholic KOH and p-toluidine forms

(1)
$$H_3C$$
—CN

(2)
$$H_3C \longrightarrow N_2Cl$$

- 51. Fluorobenzene (C_6H_5F) can be synthesized in the laboratory
 - (1) From aniline by diazotisation followed by heating the diazonium salt with HBF4
 - (2) By direct fluorination of benzene with F₂ gas
 - (3) By reacting bromobenzene with NaF solution
 - (4) By heating phenol with HF and KF
- 52. In the chemical reaction, $CH_3CH_2NH_2 + CHCl_3 + 3KOH \rightarrow (A) + (B) + 3H_2O$, compounds (A) and (B) are respectively:
 - (1) C₂H₅NC and K₂CO₃
 - (2) C₂H₅NC and 3KCl
 - (3) C₂H₅CN and 3KCl
 - (4) CH₃CH₂CONH₂ and 3KCl
- 53. In the chemical reactions the compounds 'A' and 'B' respectively are:

- (1) Nitrobenzene and fluorobenzene
- (2) Phenol and benzene
- (3) Benzene diazonium chloride and fluorobenzene
- (4) Nitrobenzene and chlorobenzene
- **54.** In the following chemical reactions, the compounds A and B are respectively:

- (1) Benzene diazonium chloride and benzonitrile
- (2) Nitrobenzene and chlorobenzene
- (3) Phenol and bormobenzene
- (4) Fluorobenzene and phenol

55. In the reaction

$$\underbrace{\stackrel{NH_2}{\longleftarrow}}_{CH_3} \xrightarrow{NaNO_2/HCl} D \xrightarrow{CuCN/KCN} \Delta [E] + N_2$$

; The product [E] is:

- 56. Fluorination of an aromatic ring is easily accomplished by treating a benzene diazonium salt with HBF4. Which of the following conditions is correct about this reaction
 - (1) Only heat
- (2) NaNO₂/Cu
- (3) Cu₂O/H₂O
- (4) NaF/Cu
- 57. Products 'A' and 'B' formed in the following reactions are respectively:

$$\begin{array}{c}
\stackrel{\oplus}{\text{NH}_3\text{CH}_3\text{COO}} \\
+ \text{HNO}_2 \longrightarrow A \xrightarrow{C_6\text{H}_5\text{NH}_2} B
\end{array}$$

(1)
$$N=N-O-CCH_3$$
 $N=N-O-NH_2$ and $N=N-O-NH_2$ $N=N-O-NH_2$

(2)
$$\begin{array}{c} O \\ \parallel \\ N=N-OCCH_3 \\ SO_3H \\ \end{array}$$
 and
$$\begin{array}{c} H \\ N=N-N \\ \end{array}$$
 (3)
$$\begin{array}{c} N=NCOCH_3 \\ SO_3H \\ SO_3H \\ \end{array}$$
 and
$$\begin{array}{c} N=N \\ SO_3H \\ \end{array}$$
 and
$$\begin{array}{c} N=N \\ SO_3H \\ \end{array}$$
 (4)
$$\begin{array}{c} N=N-N \\ SO_3H \\ \end{array}$$
 and
$$\begin{array}{c} N=N \\ SO_3H \\ \end{array}$$

58. The major product of the following reaction is:

(1)
$$CH_3$$
 (2) NH (3) NH (4) NH

59. The major product formed in the reaction given below will be:

$$NH_{2} \xrightarrow{NaNO_{2}}$$

$$Aq. HCl, 0-5°C$$

$$OH$$

$$OH$$

$$NO_{2}$$

$$NO_{2}$$

$$(4) \qquad NO_{2}$$

- **60.** A compound 'X' on treatment with Br₂/NaOH, provided C₃H₉N, which gives positive carbylamine test. Compound 'X' is:
 - (1) CH₃COCH₂NHCH₃
 - (2) CH₃CON(CH₃)₂
 - (3) CH₃CH₂COCH₂NH₂
 - (4) CH₃CH₂CH₂CONH₂

Integer Type Questions (61 to 75)

- 61. What is the molecular mass of the gas evolved when methylamine reacts with nitrous acid.
- **62**. How many of the following statement(s) is/are incorrect.
 - (I) -NO₂ is a deactivating group
 - (II) -NO₂ group causes the substitution to occur at meta-position
 - (III) Nucleophilic ring substitution in nitrobenzene occurs at ortho and para position
 - (IV) Hydrolysis of picryl chloride requires higher temperature than chlorobenzene
- 63. The cimetidine has several nitrogen atom in its structure. Identify the most basic Nitrogen atom (marked in structure)

$$\begin{array}{c|c} (4) & H & H \\ N & I & I^{(2)} \\ N & CH_3 & N \\ H & & CH_3 \end{array}$$

- **64.** How many of the following statement(s) is/are incorrect
 - (I) Fluoro benzene can be synthesized in the laboratory from aniline by diazotisation followed by heating with HBF4
 - (II) Benzyl amine on reaction with NaNO2 /HCl followed by β -Naphthol in slight basic medium forms a coloured dye.
 - (III) Quarternary Ammonium hydroxides having β -hydrogen atom give hoffmann elimination on pyrolysis.

(IV)
$$\stackrel{\text{NH}_2}{}$$
 on reaction with HNO₂ produces $\stackrel{\text{CH}_2-\text{OH}}{}$

- **65.** How many of the following statement(s) is/are incorrect
 - (I) Pyrrole is more basic than pyridine
 - (II) Pyridine is more basic than piperidene
 - (III) In 4- (N,N-dimethylamino) pyridine

$$\left(\begin{array}{c} CH_{3} \\ N_{A} \end{array}\right)$$
, N_{A} is more basic

than NB.

(IV) In nicotine

more basic than NB.

- 66. What is the maximum number of compounds with the molecular formula C₄H₁₁N, which give an alkali soluble precipitate with benzyl sulfonyl chloride?
- 67. Identify molecular weight of final product (Y)

$$N : K \xrightarrow{Cl-CH_1-COOH} (X) \xrightarrow{H_1O/H} (Y) + \bigcirc COOH$$

68.

$$\xrightarrow{\text{Sn/HCl}} \xrightarrow{\text{NaNO}_2} \xrightarrow{\text{H}_2\text{O},\Delta} Z \text{ (major)}$$

product)

Find the molecular weight of Z.

69.
$$NH_{2}$$

$$NaNO_{3} + HCI \rightarrow P$$

$$0.5^{\circ}C$$

$$P \xrightarrow{CuCN} Q \xrightarrow{Complete} R + S$$

$$A \setminus NaOH + CaO$$

$$T$$

$$T$$

$$A \cap A$$

Molecular weight of T will be:

70.

$$Ph-NO_2 \xrightarrow{Sn/HCl} \xrightarrow{NaNO_2} \xrightarrow{Basic\ medium} \xrightarrow{Ph-OH}$$

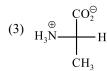
Product Y

Find the molecular weight of Y and report your answer as $\frac{\text{Molecular weight of Y}}{2}$.

- 71. A compound with molecular mass 180 is acylated with CH₃COCl to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is:
- 72. In the Hoffmann bromamide degradation reaction, the ratio of number of moles of NaOH and Br₂ used per mole of amine produced is:
- 73. What is the molar mass of the final major product obtained on complete reduction of benzene-diazonium chloride with Zn/HCl.
- 74. The major product of the following reaction will have how many sigma bonds.

75. How many chiral centers are present in the major product obtained when 2-Aminobutane is treated with nitrous acid?

CHAPTER

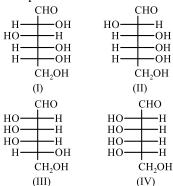

BIOMOLECULES

Single Option Correct Type Questions (01 to 60)

- 1. A hexapeptide has the composition Ala, Gly, Phe, Val. Both the N-terminal and C-terminal units are Val. Cleavage of the hexapeptide by chymotrypsin gives two different tripeptides, both having Val as the N-terminal group. Among the products of random hydrolysis is a Ala-Val dipeptide fragment. What is the primary structure of the hexapeptide?
 - (1) Val-Gly-Phe-Val-Ala-Val
 - (2) Val-Ala-Phe-Val-Gly-Val
 - (3) Val-Gly-Ala-Val-Phe-Val
 - (4) Val-Phe-Val-Ala-Gly-Val
- 2. Which of the following is the major solute species in a solution of alanine at pH = 2?

(1)
$$\underset{H_3N}{\overset{\oplus}{\longrightarrow}} H$$

(2) $H_2N \longrightarrow H$

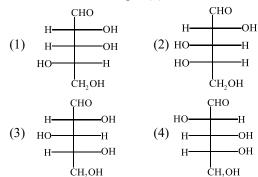

(4) $H_2N \longrightarrow H$ CH_3

3.

The above process in which α and β form remain in equilibrium with acyclic form and a change in optical rotation is observed which is known as -

- (1) Mutarotation
- (2) Epimerisation
- (3) Condensation
- (4) Inversion
- **4.** In which of the following pairs, both the compounds give positive test with Tollen's reagent?
 - (1) Glucose and sucrose
 - (2) Glucose and fructose
 - (3) Fructose and sucrose
 - (4) Acetophenone and hexanal
- **5.** Test by which starch and cellulose can be distinguished from each other is:
 - (1) Reducing sugar test
 - (2) Analysis of products of hydrolysis
 - (3) Iodine test
 - (4) Molisch test
- **6.** Which of the statements is incorrect.
 - (1) Fructose on reduction with NaBH4 gives only one product.
 - (2) Solubility of amino acid at its isoelectric point is minimum.
 - (3) Guanidine is more basic than diethyl amine.
 - (4) Mutarotation is observed in the aqueous solution of glucose.
- 7. Which of the following is not reducing sugar
 - (1) Sucrose
- (2) Glucose
- (3) Fructose
- (4) Maltose
- **8.** What is the corresponding m-RNA sequence for the DNA segment AATCAGTT?
 - (1) AAUCAGUU
- (2) CCAUCGAA
- (3) AACUGAUU
- (4) UUAGUCAA

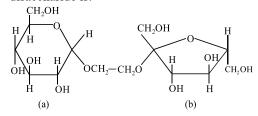
9. Which two of the following compounds, if any, are epimers?


- (1) I & IV
- (2) I & III
- (3) II & III
- (4) III & IV
- 10. An amino acid is characterized by two pKa values the one corresponding to the more acidic site is designated as pKa₁ and the other corresponding to the less acidic site is designated as pKa₂. Some amino acids have side chain with acidic or basic groups. These amino acids have pKa₃ value also for the side chain.

Amino acid	P ^{Ka1}	P ^{Ka2}	P ^{Ka3} (side chain)
Aspartic acid	1.88	9.6	3.65
Glutamic acid	2.19	9.67	4.25
Lysine	2.18	8.95	10.53
Arginine	2.17	9.04	12.48

The isoelectric point (pI) of Aspartic acid and lysine will be respectively:

- (1) 6.62 & 9.74
- (2) 2.77 & 5.6
- (3) 2.77 & 9.74
- (4) 9.74 & 6.62
- 11. Fructose reduces Tollen's reagent due to
 - (1) Presence of ketonic group
 - (2) Presence of aldehydic group
 - (3) Rearrangement of fructose into a mixture of glucose, fructose and mannose
 - (4) Both (2) & (3)
- 12. Acid hydrolysis of sucrose causes
 - (1) Esterification
 - (2) Saponification


- (3) Inversion
- (4) Rosenmund reduction
- 13. (+) Arabinose is (2R, 3S, 4S)-aldopentose which of the following is (+) arabinose?

- **14**. Glucose does not give:
 - (1) Schiff's test
 - (2) Hydrogensulphite addition product with NaHSO₃
 - (3) 2, 4 DNP test
 - (4) All of these
- **15**. Glucose reacts with HCN to give:
 - (1) Saccharic acid
- (2) Cyanohydrin
- (3) n-hexane
- (4) Gluconic
- **16**. Which is correct statement?
 - (1) Starch is a polymer of α -glucose
 - (2) Amylose is a component of cellulose
 - (3) Proteins are composed of only one type of amino acids
 - (4) In cyclic structure of pyranose form of glucose, there are five carbons and one oxygen atom
- 17. α -helical structure of protein is stabilized by:
 - (1) Peptide bond
- (2) Dipeptide bond
- (3) Van der Waal's forces (4) Hydrogen bond
- **18**. When protein is subjected to denaturation:
 - (1) It is hydrolysed to constituent amino acids
 - (2) Electric field has no influence on its migration
 - (3) Constituent amino acids are separated
 - (4) It uncoils from an ordered and specific conformation into a more random conformation and precipitates from solution

PARAKRAM JEE MAIN BOOKLET

- 19. Which of the following is incorrect about isoelectric point of amino acid?
 - (1) At this point, amino acid is present in the form of zwitter ion
 - (2) At this point, amino acid is electrically neutral
 - (3) If pH > isoelectric point, amino acid will move toward anode
 - (4) If pH > isoelectric point, amino acid will move towards cathode
- **20**. Complementary bases present in DNA are:
 - (1) Uracil & Adenine : Cytosine & Guanine
 - (2) Thymine & Adenine: Guanine & Cytosine
 - (3) Adenine & Thymine : Guanine & Uracil
 - (4) Adenine & Guanine: Thymine & Cytosine
- 21. The correct statement about the following disaccharide is:

- (1) Ring (a) is pyranose with α -glycosidic link
- (2) Ring (a) is furanose with α -glycosidic link
- (3) Ring (b) is furanose with α -glycosidic link
- (4) Ring (b) is pyranose with α -glycosidic link
- **22**. **Statement-1:** Glucose and fructose can be differentiated by Fehling's solution. and

Statement-2: Glucose is an aldose while fructose is a ketose (having keto functional group).

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- **23**. **Statement-1:** D-Glucose and D-Mannose are C-2 epimers and

Statement-2: They only have different configuration at carbon number-2.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- **24. Statement-1:** Glucose gives shining silver mirror with Tollen's reagent.

Statement-2: Reaction of glucose with Tollen's reagent gives Ag.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

H\C/O

25. HOH OH Allose, given monosaccharide is HOH OH

a/an?

- (1) Aldopentose
- (2) Aldohexose
- (3) Ketopentose

ĊH,OH

- (4) Aldoheptose
- 26. α-D-glucose and β-D-glucose differ from each other due to the difference in one of the carbon atoms, with respect to its:
 - (1) Number of –OH groups
 - (2) Configuration
 - (3) Conformation
 - (4) Size of hemiacetal ring
- 27. Which of the following α -amino acids is not optically active?
 - (1) Alanine
- (2) Glycine
- (3) Phenylalanine
- (4) Cysteine
- **28**. The force of attraction between the neighbouring peptide chains is
 - (1) Vander Waal's force (2) Covalent bond
 - (3) Hydrogen bond
- (4) Peptide linkage

- **29**. Vitamin B_6 is known as:
 - (1) Pyridoxine
- (2) Thiamine
- (3) Tocopherol
- (4) Riboflavin
- **30**. Which of the following statements about DNA is not correct?
 - (1) It has a double helical structure
 - (2) It undergoes replication
 - (3) The two strands in a DNA molecule are exactly similar
 - (4) It contains the 2-deoxyribose pentose sugar.
- 31. Match List-I with List-II.

List-	I (Polymer)	L	ist- II (Monomer)
Ι	Sucrose	P	Linkage and hydrolysis product D (+) glucose
II	Maltose	Q	Linkage and hydrolysis product D (–) fructose
III	Lactose	R	D (+) galactose
IV	Cellulose	S	$\alpha (1 \rightarrow 4)$
		T	$\beta (1 \rightarrow 4)$

- (1) I-R, Q; II-Q, S; III-P, S, T; IV-P, S
- (2) I-Q, T; II-R, P; III-P, T; IV-S, R
- (3) I-P, S; II-P, Q; III-P, R; IV-P, T
- (4) I-P, Q; II-P, S; III-P, R, T; IV-P, T
- **32**. Match List-I with List-II.

	List- I		List- II
I	NH ₃ ⁺ CH ₃ -CH-COO	P	Acidic amino acid
II	Arginine	Q	Neutral amino acid
III	Valine	R	Zwitter ion
IV	Aspartic acid	S	Basic amino acid

- (1) I-Q, S; II-P; III-Q; IV-S
- (2) I-Q, R; II-S; III-Q; IV-P
- (3) I-P, S; II-R; III-S; IV-Q
- (4) I-P, Q; II-R; III-S; IV-Q
- 33. 3 molecule of phenylhydrazine is used in Osazone formation. The correct statement about the use of phenylhydrazine is:

- (1) All the three molecules react in similar manner.
- (2) Two molecules reacts in similar manner whereas the third reacts in different way.
- (3) All the three molecules react in different way.
- (4) Only two react in same manner but the third molecule remains unreacted.
- **34. Statement-1:** Glucose gives a reddish-brown precipitate with Fehling's solution. because **Statement-2:** Reaction of glucose with

Statement-2: Reaction of glucose with Fehling's solution gives CuO and gluconic acid.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- **35**. Complete hydrolysis of cellulose gives:
 - (1) D-fructose
- (2) D-ribose
- (3) D-glucose
- (4) L-glucose
- **36**. The reason for double helical structure of DNA is:
 - (1) Van der Waal's forces.
 - (2) Dipole-dipole interaction.
 - (3) Hydrogen bonding.
 - (4) Electrostatic attractions.
- 37. Insulin production and its action in human body are responsible for the level of diabetes. This compound belongs to which of the following categories?
 - (1) A co- enzyme
- (2) A hormone
- (3) An enzyme
- (4) An antibiotic
- **38**. The pyrimidine bases present in DNA are:
 - (1) Cytosine and guanine
 - (2) Cytosine and thymine
 - (3) Cytosine and uracil
 - (4) Cytosine and adenine
- **39**. The term anomers of glucose refers to:
 - (1) A mixture of (D)-glucose and (L)-glucose
 - (2) Enantiomers of glucose

PARAKRAM JEE MAIN BOOKLET

- (3) Isomers of glucose that differ in configuration at carbon one (C-1)
- (4) Isomers of glucose that differ in configurations at carbons one and four (C-1 and C-4)
- **40**. The secondary structure of protein refers to:
 - (1) α-helical or β-pleated backbone.
 - (2) Hydrophobic interactions.
 - (3) Sequence of α -amino acids.
 - (4) Hydrophilic interactions.
- **41**. α -D- (+)-glucose and β -D-(+)-glucose are:
 - (1) Structural isomers
- (2) Anomers
- (3) Enantiomers
- (4) Conformers
- **42**. The change in the optical rotation of freshly prepared solution of glucose is known as:
 - (1) Racemisation
- (2) Specific rotation
- (3) Mutarotation
- (4) Tautomerism
- **43**. Which one of the following statements is correct?
 - (1) All amino acids except lysine are optically active
 - (2) All amino acids are optically active
 - (3) All amino acids except glycine are optically active
 - (4) All amino acids except glutamic acid is optically active
- **44.** Which of the vitamins given below is water soluble?
 - (1) Vitamin C
- (2) Vitamin D
- (3) Vitamin E
- (4) Vitamin K
- **45**. Glucose on prolonged heating with HI gives:
 - (1) Hexanoic acid
- (2) 6-iodohexanal
- (3) n-Hexane
- (4) 1-Hexene
- **46.** Which of the following will not show mutarotation?
 - (1) Maltose
- (2) Lactose
- (3) Glucose
- (4) Sucrose
- **47**. Consider the following sequence for aspartic acid:

$$\begin{array}{c|c} CO_2H & CO_2^-\\ H_3^+N & & \hline \\ CH_2CO_2H & & CH_2CO_2H \end{array}$$

$$\begin{array}{c|c} CO_2^- & CO_2^- \\ H_3^+ N & H & 9.60 \\ \hline CH_2CO_2^- & CH_2CO_2^- \end{array}$$

The pI (isoelectric point) of aspartic acid is:

- (1) 5.74
- (2) 3.65

(3) 2.77

- (4) 1.88
- **48**. The incorrect statement among the following is:
 - (1) α-D-glucose and β-D-glucose are anomers.
 - (2) The penta acetate of glucose does not react with hydroxyl amine.
 - (3) Cellulose is a straight chain polysaccharide made up of only β-Dglucose units.
 - (4) α -D-glucose and β -D-glucose are enantiomers.
- **49**. Which of the following will not exist in zwitter ionic form at pH = 7?

(1)
$$\bigvee_{\text{COOH}}^{\text{NH}_2}$$

$$(2) \qquad \begin{matrix} O \\ N \\ H \end{matrix} \qquad CO_2H$$

(3)
$$\operatorname{SO}_{3H}^{NH_2}$$

$$(4) \qquad \qquad SO_3H$$

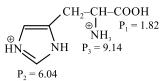
50. The increasing order of pI (isoelectronic point) of the following amino acids in aqueous solution is:

Gly, Asp, Lys, Arg

- $(1) \quad Asp < Gly < Lys < Arg$
- $(2) \quad Arg \le Lys \le Gly \le Asp$
- $(3) \quad Asp < Gly < Arg < Lys$
- (4) Gly < Asp < Arg < Lys
- 51. The correct sequence of amino acids present in the tripeptide given below is:

$$\begin{array}{c|c} Me & Me & OH \\ H_2N & & & \\ OH & OH \\ OH & OH \\ \end{array}$$

- (1) Val Ser Thr
- (2) Leu Ser Thr
- (3) Thr Ser Leu
- (4) Thr Ser Val
- **52**. The correct match between List- I and List- II is:


(List- I (Compound)		List- II (Reagent)
I	Lysine	P	1-Naphthol
II	Furfural	Q	Ninhydrin
III	Benzyl alcohol	R	KMnO ₄
IV	Styrene	S	Ceric ammonium nitrate

- (1) I-R; II-P; III-Q; IV-S
- (2) I-Q; II-P; III-S; IV-R
- (3) I-Q; II-R; III-S; IV-P
- (4) I-Q; II-P; III-R; IV-S
- 53. Ring structure of glucose is due to formation of hemiacetal and ring formation between
 - (1) C_1 and C_5
- (2) C_1 and C_4
- (3) C_1 and C_3
- (4) C₃ and C₄
- **54**. Among the following compounds most basic amino acid is:
 - (1) Asparagine
- (2) Serine
- (3) Histidine
- (4) Lysine
- **55**. Match the Following:

	List- I (Artificial sweetners)	List- II (Characteristics)		
I	CH,OH H OH H OH H HOCH,CI H HO CH,CC (Sucrose)	P	A derivative of dipeptide	
II	O H H O H H O HO-C-C-C-C-N-C-C-OCH, H NH ₂ H-C-H (Aspartame)	Q	A derivative of disaccharide	

III	COOH H——OH HO——H HO——H COOH (Galactoric)	R	Reduction product of an aldopentose
IV	(Aldaric acid) CH ₂ OH H — OH HO — H H — HO CH ₂ OH (Xylitol)	S	Oxidation product of aldohexose

- (1) I-Q; II-P; III-S; IV-R
- (2) I-P; II-Q; III-S; IV-R
- (3) I-R; II-P; III-Q; IV-S
- (4) I-Q; II-R; III-P; IV-S
- **56**. Which one of the following kinds of bonds are not broken during denaturation of a protein?
 - (1) Peptide bond
- (2) Hydrogen bond
- (3) Disulphide bond
- (4) Ionic bond
- 57. The function of proteins is to act as:
 - (1) Structural materials of animal tissues
 - (2) Enzymes and antibodies
 - (3) Metabolic regulators
 - (4) All of these
- **58**. Observe the pKa values (P₁ P₃) of the given amino acid.

Which form of this amino acid will exist in aqueous solution at pH = 8

- (1) As dication
- (2) As monocation
- (3) As zwitter ion
- (4) As monoanion
- **59**. Three cyclic structures of monosaccharides are given below which of these are anomers.

PARAKRAM JEE MAIN BOOKLET

- (1) I and II only
- (2) II and III only
- (3) I and III only
- (4) III is anomer of I and II
- **60**. Find true and False from the following statements regarding carbohydrates
 - S₁: All monosaccharides whether aldoses or ketoses are reducing sugars.
 - S2: Bromine water can be used to differentiate between aldoses and ketoses
 - S₃: A pair of diastereomeric aldoses which differ only in configuration at C-2 are anomers.
 - S4: Osazone formation destroys the configuration at C-2 of an aldose, but does not affect the configuration of the rest of the molecule.
 - (1) TTTT
- (2) TFTF
- (3) TTFT
- (4) FTTT

Integer Type Questions (61 to 75)

- 61. pka₁ and pka₂ value for alanine are found to be 2.34 and 9.66. The pH at which isoelectric point is attained is
- 62. A carbohydrate having molecular mass 150,

was treated with excess $CH_3 - C - CI$. The precipitate was a derivative of the carbohydrate having molecular mass 318. What is the number of alcoholic –OH groups present in the carbohydrate?

$$\begin{array}{c} \operatorname{NH_3} \\ | \\ \operatorname{HOOC-CH_2-CH_2-CH-COOH} \\ \end{array}$$

Given above is the form in which an amino acid exists in a strongly acidic medium.

If,
$$K_a(\alpha) = 10^{-9}$$

 $K_a(\beta) = 10^{-5}$

$$K_a(\gamma) = 10^{-3}$$

63.

What will be the pH of the solution at isoelectric point (pI)?

64. The number of chiral carbon atoms in D(+) Glucose is.

- **65.** Sum of the number 1⁰ alcoholic group present in open chain structure of glucose and fructose
- 66. Sum of the total moles of acetic anhydride (Ac₂O) is needed to react completely with 1 mole each of tataric acid, ribose and glucose are

- 67. D-glucose reacts with phenylhydrazine to make osazone. How many molecules of phenylhydrazine are used for this reaction per molecule of D-glucose?
- 68. A tripeptide is composed equally of L-valine, L-tyrosine and L-alanine (one molecule of each). How many isomeric tripeptides of this kind may exist? (consider no repetition is allowed)
- **69**. The number of amino acids required to form a tripeptide bond are?
- **70**. What is the total number of acidic amino acids found in human proteins?
- 71. The total number of basic groups in the following form of lysine is

72. For the structure CHOH , total possible optical CHOH CHOH CHOH

isomers are

- 73. What is the number of peptide bonds in a pentapeptide?
- 74. How many moles of acetyl chloride are used per mole of sucrose for esterification.
- 75. Among the following amino acids no. of essential amino acids are Glycine, Alanine, Valine, Cysteine, Leucine, Isoleucine, Serine, Threonine.

01. STOICHIOMETRY AND REDOX REACTIONS

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(4)	9.	(4)	17.	(4)	25.	(3)	33.	(1)	41.	(4)	49.	(3)	57.	(2)
2.	(1)	10.	(4)	18.	(2)	26.	(1)	34.	(3)	42.	(2)	50.	(3)	58.	(2)
3.	(1)	11.	(2)	19.	(2)	27.	(3)	35.	(4)	43.	(3)	51.	(2)	59.	(1)
4.	(1)	12.	(1)	20.	(3)	28.	(2)	36.	(3)	44.	(3)	52.	(1)	60.	(3)
5.	(4)	13.	(3)	21.	(4)	29.	(2)	37.	(4)	45.	(3)	53.	(2)		
6.	(1)	14.	(1)	22.	(1)	30.	(2)	38.	(2)	46.	(1)	54.	(1)		
7.	(2)	15.	(3)	23.	(2)	31.	(3)	39.	(2)	47.	(2)	55.	(4)		
8.	(1)	16.	(4)	24.	(1)	32.	(4)	40.	(1)	48.	(4)	56.	(1)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(3)	63.	(4)	65.	(5)	67.	(1)	69.	(3)	71.	(567)	73.	(18)	75.	(7)
62.	(9)	64.	(2)	66.	(60)	68.	(5)	70.	(875)	72.	(100)	74.	(333)		

02. STRUCTURE OF ATOM

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(2)	9.	(1)	17.	(1)	25.	(4)	33.	(3)	41.	(3)	49.	(4)	57.	(1)
2.	(3)	10.	(4)	18.	(3)	26.	(3)	34.	(4)	42.	(4)	50.	(2)	58.	(4)
3.	(4)	11.	(1)	19.	(4)	27.	(1)	35.	(1)	43.	(4)	51.	(4)	59.	(1)
4.	(2)	12.	(2)	20.	(1)	28.	(1)	36.	(2)	44.	(3)	52.	(4)	60.	(1)
5.	(3)	13.	(3)	21.	(4)	29.	(1)	37.	(4)	45.	(3)	53.	(1)		
6.	(2)	14.	(1)	22.	(4)	30.	(3)	38.	(2)	46.	(4)	54.	(4)		
7.	(3)	15.	(1)	23.	(3)	31.	(1)	39.	(2)	47.	(3)	55.	(3)		
8.	(1)	16.	(1)	24.	(2)	32.	(1)	40.	(3)	48.	(1)	56.	(2)		

61.	(912)	63.	(1)	65.	(759)	67.	(3)	69.	(91)	71.	(53)	73.	(7)	<i>75.</i>	(27)
62.	(6)	64.	(5)	66.	(984)	68.	(6)	70.	(8)	72.	(5)	74.	(2)		

03. CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(3)	9.	(2)	17.	(4)	25.	(1)	33.	(4)	41.	(3)	49.	(4)	57.	(4)
2.	(4)	10.	(3)	18.	(2)	26.	(3)	34.	(1)	42.	(2)	50.	(1)	58.	(3)
3.	(3)	11.	(3)	19.	(4)	27.	(2)	35.	(4)	43.	(3)	51.	(4)	59.	(1)
4.	(1)	12.	(4)	20.	(2)	28.	(3)	36.	(2)	44.	(1)	52.	(4)	60.	(1)
5.	(4)	13.	(3)	21.	(3)	29.	(3)	37.	(3)	45.	(3)	53.	(3)		
6.	(2)	14.	(3)	22.	(2)	30.	(2)	38.	(3)	46.	(4)	54.	(3)		
7.	(2)	15.	(1)	23.	(4)	31.	(4)	39.	(3)	47.	(2)	55.	(3)		
8.	(1)	16.	(4)	24.	(3)	32.	(3)	40.	(3)	48.	(1)	56.	(2)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(18)	63.	(6)	65.	(115)	67.	(109)	69.	(23)	71.	(3)	73.	(3)	75.	(126)
62.	(81)	64.	(5)	66.	(25)	68.	(15)	70.	(526)	72.	(1)	74.	(3)		

04. CHEMICAL BONDING

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(2)	9.	(2)	17.	(4)	25.	(3)	33.	(3)	41.	(2)	49.	(2)	57.	(1)
2.	(2)	10.	(4)	18.	(1)	26.	(1)	34.	(4)	42.	(3)	50.	(2)	58.	(1)
3.	(2)	11.	(3)	19.	(1)	27.	(2)	35.	(4)	43.	(2)	51.	(3)	59.	(1)
4.	(4)	12.	(4)	20.	(3)	28.	(4)	36.	(3)	44.	(1)	52.	(2)	60.	(1)
5.	(3)	13.	(3)	21.	(3)	29.	(3)	37.	(2)	45.	(3)	53.	(1)		
6.	(1)	14.	(1)	22.	(3)	30.	(3)	38.	(3)	46.	(4)	54.	(2)		
7.	(4)	15.	(2)	23.	(1)	31.	(4)	39.	(3)	47.	(2)	55.	(1)		
8.	(3)	16.	(2)	24.	(2)	32.	(3)	40.	(3)	48.	(1)	56.	(4)		

61.	(4)	63.	(17)	65.	(4)	67.	(6)	69.	(5)	71.	(2)	73.	(2)	75.	(2)
					(15)										

05. THERMODYNAMICS

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(2)	9.	(2)	17.	(4)	25.	(2)	33.	(4)	41.	(3)	49.	(4)	57.	(3)
2.	(4)	10.	(3)	18.	(2)	26.	(3)	34.	(2)	42.	(1)	50.	(4)	58.	(1)
3.	(3)	11.	(4)	19.	(3)	27.	(1)	35.	(3)	43.	(1)	51.	(4)	59.	(1)
4.	(2)	12.	(2)	20.	(2)	28.	(4)	36.	(4)	44.	(1)	52.	(1)	60.	(4)
5.	(3)	13.	(3)	21.	(2)	29.	(2)	37.	(1)	45.	(1)	53.	(2)		
6.	(3)	14.	(2)	22.	(3)	30.	(3)	38.	(4)	46.	(1)	54.	(1)		
7.	(2)	15.	(2)	23.	(2)	31.	(1)	39.	(3)	47.	(1)	55.	(1)		
8.	(3)	16.	(2)	24.	(1)	32.	(3)	40.	(4)	48.	(1)	56.	(1)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(213)	63.	(400)	65.	(370)	67.	(352)	69.	(0)	71.	(53)	73.	(1)	75.	(121)
62.	(0)	64.	(350)	66.	(38)	68.	(44)	70.	(425)	72.	(110)	74.	(270)		

06. CHEMICAL EQUILIBRIUM

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(2)	9.	(1)	17.	(3)	25.	(4)	33.	(1)	41.	(4)	49.	(4)	57.	(1)
2.	(3)	10.	(2)	18.	(4)	26.	(1)	34.	(3)	42.	(1)	50.	(2)	58.	(2)
3.	(4)	11.	(4)	19.	(2)	27.	(2)	35.	(3)	43.	(1)	51.	(2)	59.	(1)
4.	(1)	12.	(1)	20.	(3)	28.	(3)	36.	(2)	44.	(1)	52.	(2)	60.	(1)
5.	(4)	13.	(1)	21.	(2)	29.	(2)	37.	(2)	45.	(2)	53.	(1)		
6.	(2)	14.	(1)	22.	(3)	30.	(2)	38.	(4)	46.	(2)	54.	(2)		
7.	(2)	15.	(4)	23.	(2)	31.	(4)	39.	(4)	47.	(4)	55.	(1)		
8.	(2)	16.	(1)	24.	(4)	32.	(2)	40.	(3)	48.	(1)	56.	(1)		

61.	(16)	63.	(1)	65.	(50)	67.	(50)	69.	(50)	71.	(10)	73.	(18)	75.	(30)
62.	(6)	64.	(16)	66.	(4)	68.	(400)	70.	(25)	72.	(1)	74.	(36)		

07. IONIC EQUILIBRIUM

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(2)	9.	(1)	17.	(1)	25.	(1)	33.	(3)	41.	(1)	49.	(3)	57.	(4)
2.	(2)	10.	(1)	18.	(2)	26.	(4)	34.	(1)	42.	(4)	50.	(2)	58.	(2)
3.	(1)	11.	(2)	19.	(3)	27.	(3)	35.	(1)	43.	(2)	51.	(1)	59.	(1)
4.	(1)	12.	(2)	20.	(1)	28.	(3)	36.	(3)	44.	(4)	52.	(3)	60.	(2)
5.	(1)	13.	(1)	21.	(1)	29.	(2)	37.	(4)	45.	(1)	53.	(1)		
6.	(1)	14.	(2)	22.	(2)	30.	(1)	38.	(1)	46.	(2)	54.	(4)		
7.	(2)	15.	(1)	23.	(1)	31.	(2)	39.	(1)	47.	(1)	55.	(3)		
8.	(2)	16.	(1)	24.	(2)	32.	(3)	40.	(3)	48.	(1)	56.	(3)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(900)	63.	(7)	65.	(20)	67.	(10)	69.	(9)	71.	(4)	73.	(2)	75.	(2)
62.	(9)	64.	(3)	66.	(50)	68.	(5)	70.	(316)	72.	(9)	74.	(10)	i	

08. ORGANIC CHEMISTRY- SOME BASIC PRINCIPLES & TECHNIQUES

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(4)	9.	(1)	17.	(2)	25.	(1)	33.	(3)	41.	(1)	49.	(1)	57.	(1)
2.	(3)	10.	(2)	18.	(3)	26.	(3)	34.	(1)	42.	(2)	50.	(3)	58.	(1)
3.	(2)	11.	(2)	19.	(2)	27.	(2)	35.	(2)	43.	(1)	51.	(2)	59.	(1)
4.	(2)	12.	(2)	20.	(4)	28.	(2)	36.	(4)	44.	(4)	52.	(3)	60.	(3)
5.	(2)	13.	(1)	21.	(4)	29.	(3)	37.	(2)	45.	(2)	53.	(2)		
6.	(3)	14.	(4)	22.	(3)	30.	(3)	38.	(1)	46.	(4)	54.	(4)		
7.	(4)	15.	(3)	23.	(2)	31.	(4)	39.	(1)	47.	(2)	55.	(1)		
8.	(1)	16.	(4)	24.	(3)	32.	(3)	40.	(2)	48.	(3)	56.	(2)		

61.	(50)	63.	(32)	65.	(3)	67.	(1)	69.	(7)	71.	(7)	73.	(9)	75.	(32)
62.	(16)	64.	(4)	66.	(4)	68.	(22)	70.	(8)	72.	(6)	74.	(2)		

09. HYDROCARBONS

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(4)	9.	(4)	17.	(3)	25.	(2)	33.	(2)	41.	(2)	49.	(3)	57.	(4)
2.	(4)	10.	(3)	18.	(3)	26.	(3)	34.	(2)	42.	(1)	50.	(4)	58.	(1)
3.	(2)	11.	(3)	19.	(2)	27.	(2)	35.	(3)	43.	(1)	51.	(1)	59.	(3)
4.	(2)	12.	(2)	20.	(3)	28.	(3)	36.	(4)	44.	(3)	52.	(2)	60.	(2)
5.	(2)	13.	(2)	21.	(2)	29.	(2)	37.	(4)	45.	(3)	53.	(4)		
6.	(1)	14.	(4)	22.	(3)	30.	(2)	38.	(2)	46.	(3)	54.	(4)		
7.	(3)	15.	(4)	23.	(1)	31.	(4)	39.	(1)	47.	(3)	55.	(3)		
8.	(3)	16.	(2)	24.	(4)	32.	(3)	40.	(4)	48.	(4)	56.	(1)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(5)	63.	(3)	65.	(6)	67.	(6)	69.	(44)	71.	(2)	73.	(30)	75.	(2)
62.	(1)	64.	(3)	66.	(4)	68.	(2)	70.	(44)	72.	(4)	74.	(3)		

10. SOLUTIONS AND COLLIGATIVE PROPERTIES

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

	(2)	1.		1		1	(4)	Laa	(4)	1	(4)	1.40		1	(=)
1.	(3)	9.	(4)	17.	(4)	25.	(1)	33.	(1)	41.	(1)	49.	(1)	57.	(2)
2.	(1)	10.	(2)	18.	(2)	26.	(3)	34.	(2)	42.	(1)	50.	(4)	58.	(3)
3.	(2)	11.	(4)	19.	(3)	27.	(2)	35.	(2)	43.	(3)	51.	(1)	59.	(1)
4.	(2)	12.	(2)	20.	(4)	28.	(1)	36.	(1)	44.	(3)	52.	(2)	60.	(1)
5.	(2)	13.	(2)	21.	(2)	29.	(3)	37.	(2)	45.	(1)	53.	(1)		
6.	(1)	14.	(4)	22.	(3)	30.	(3)	38.	(2)	46.	(4)	54.	(2)		
7.	(1)	15.	(3)	23.	(4)	31.	(3)	39.	(2)	47.	(4)	55.	(2)		
8.	(2)	16.	(4)	24.	(1)	32.	(2)	40.	(4)	48.	(2)	56.	(1)		

61.	(30)	63.	(3)	65.	(1)	67.	(350)	69.	(45)	71.	(100)	73.	(72)	75.	(325)
62.	(260)	64.	(150)	66.	(50)	68.	(93)	70.	(2)	72.	(210)	74.	(293)		

11. ELECTROCHEMISTRY

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(1)	9.	(2)	17.	(1)	25.	(4)	33.	(2)	41.	(3)	49.	(3)	57.	(4)
2.	(4)	10.	(1)	18.	(3)	26.	(4)	34.	(1)	42.	(1)	50.	(1)	58.	(2)
3.	(2)	11.	(4)	19.	(1)	27.	(1)	35.	(4)	43.	(4)	51.	(3)	59.	(2)
4.	(1)	12.	(1)	20.	(1)	28.	(1)	36.	(3)	44.	(4)	52.	(1)	60.	(4)
5.	(2)	13.	(3)	21.	(4)	29.	(3)	37.	(2)	45.	(3)	53.	(3)		
6.	(3)	14.	(4)	22.	(3)	30.	(2)	38.	(3)	46.	(1)	54.	(2)		
7.	(1)	15.	(4)	23.	(3)	31.	(2)	39.	(4)	47.	(4)	55.	(4)		
8.	(4)	16.	(1)	24.	(1)	32.	(1)	40.	(3)	48.	(3)	56.	(1)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(120)	63.	(65)	65.	(94)	67.	(193)	69.	(180)	71.	(392)	73.	(20)	75.	(105)
62.	(3)	64.	(11)	66.	(26)	68.	(31)	70.	(16)	72.	(39)	74.	(54)		

12. CHEMICAL KINETICS

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(4)	9.	(4)	17.	(2)	25.	(1)	33.	(1)	41.	(1)	49.	(3)	57.	(2)
2.	(2)	10.	(2)	18.	(4)	26.	(4)	34.	(1)	42.	(1)	50.	(4)	58.	(4)
3.	(2)	11.	(3)	19.	(3)	27.	(2)	35.	(4)	43.	(3)	51.	(1)	59.	(1)
4.	(2)	12.	(4)	20.	(3)	28.	(1)	36.	(4)	44.	(2)	52.	(3)	60.	(4)
5.	(4)	13.	(1)	21.	(1)		(3)		(3)	45.	(3)	53.	(2)		
6.	(3)	14.	(1)	22.	(1)	30.	(3)	38.	(3)	46.	(1)	54.	(3)		
7.	(3)	15.	(1)	23.	(4)	31.	(1)	39.	(4)	47.	(4)	55.	(4)		
8.	(4)	16.	(2)	24.	(2)	32.	(1)	40.	(3)	48.	(1)	56.	(2)		

61.	(11)	63.	(2)	65.	(2)	67.	(2)	69.	(30)	71.	(20)	73.	(32)	75.	(0)
62.	(15)	64.	(80)	66.	(80)	68.	(3)	70.	(2)	72.	(100)	74.	(1)		

13. THE p-BLOCK ELEMENTS (GROUP 13 TO 18)

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(1)	9.	(2)	17.	(3)	25.	(1)	33.	(4)	41.	(2)	49.	(3)	57.	(1)
2.	(2)	10.	(2)	18.	(4)	26.	(1)	34.	(2)	42.	(1)	50.	(4)	58.	(3)
3.	(3)	11.	(1)	19.	(4)	27.	(1)	35.	(3)	43.	(3)	51.	(1)	59.	(3)
4.	(4)	12.	(4)	20.	(2)	28.	(4)	36.	(4)	44.	(3)	52.	(3)	60.	(3)
5.	(3)	13.	(1)	21.	(1)	29.	(4)	37.	(1)	45.	(3)	53.	(2)		
6.	(4)	14.	(3)	22.	(2)	30.	(1)	38.	(4)	46.	(2)	54.	(1)		
7.	(4)	15.	(1)	23.	(3)	31.	(2)	39.	(1)	47.	(4)	55.	(1)		
8.	(4)	16.	(2)	24.	(1)	32.	(4)	40.	(4)	48.	(4)	56.	(4)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(3)	63.	(3)	65.	(2)	67.	(5)	69.	(3)	71.	(2)	73.	(6)	75.	(26)
											(2)				

14. THE d- AND f- BLOCK ELEMENTS & QUALITATIVE ANALYSIS

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(4)	9.	(3)	17.	(1)	25.	(3)	33.	(1)	41.	(1)	49.	(2)	57.	(3)
2.	(4)	10.	(1)	18.	(2)	26.	(1)	34.	(2)	42.	(4)	50.	(2)	58.	(1)
3.	(1)	11.	(4)	19.	(1)	27.	(1)	35.	(4)	43.	(4)	51.	(1)	59.	(4)
4.	(1)	12.	(3)	20.	(1)	28.	(1)	36.	(3)	44.	(3)	52.	(1)	60.	(3)
5.	(1)	13.	(2)	21.	(3)	29.	(1)	37.	(3)	45.	(1)	53.	(2)		
6.	(1)	14.	(3)	22.	(2)	30.	(1)	38.	(1)	46.	(1)	54.	(2)		
7.	(3)	15.	(2)	23.	(3)	31.	(1)	39.	(2)	47.	(3)	55.	(1)		
8.	(1)	16.	(2)	24.	(1)	32.	(1)	40.	(2)	48.	(2)	56.	(2)		

61.	(3)	63.	(3)	65.	(22)	67.	(4)	69.	(3)	71.	(9)	73.	(50)	75.	(46)
62.	(3)	64.	(79)	66.	(22)	68.	(6)	70.	(3)	72.	(2)	74.	(3)	i	

15. COORDINATION COMPOUNDS

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(1)	9.	(2)	17.	(3)	25.	(2)	33.	(4)	41.	(4)	49.	(3)	57.	(1)
2.	(1)	10.	(3)	18.	(3)	26.	(2)	34.	(1)	42.	(1)	50.	(2)	58.	(2)
3.	(3)	11.	(2)	19.	(4)	27.	(3)	35.	(4)	43.	(4)	51.	(3)	59.	(2)
4.	(3)	12.	(1)	20.	(4)	28.	(4)	36.	(1)	44.	(1)	52.	(1)	60.	(3)
5.	(1)	13.	(1)	21.	(4)	29.	(2)	37.	(2)	45.	(2)	53.	(2)		
6.	(2)	14.	(1)	22.	(3)	30.	(1)	38.	(3)	46.	(4)	54.	(1)		
7.	(2)	15.	(4)	23.	(3)	31.	(3)	39.	(3)	47.	(1)	55.	(4)		
8.	(3)	16.	(1)	24.	(1)	32.	(2)	40.	(4)	48.	(3)	56.	(2)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(1)	63.	(4)	65.	(1)	67.	(3)	69.	(4)	71.	(5)	73.	(240)	75.	(6)
62.	(2)	64.	(4)	66.	(1)	68.	(3)	70.	(4)	72.	(3)	74.	(2)		

16. HALOALKANES AND HALOARENES

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(4)	9.	(3)	17.	(4)	25.	(2)	33.	(1)	41.	(3)	49.	(2)	57.	(2)
2.	(3)	10.	(1)	18.	(4)	26.	(1)	34.	(3)	42.	(3)	50.	(1)	58.	(1)
3.	(2)	11.	(4)	19.	(3)	27.	(1)	35.	(3)	43.	(3)	51.	(2)	59.	(1)
4.	(2)	12.	(4)	20.	(3)	28.	(1)	36.	(2)	44.	(4)	52.	(3)	60.	(2)
5.	(2)	13.	(1)	21.	(1)	29.	(4)	37.	(2)	45.	(1)	53.	(2)		
6.	(1)	14.	(2)	22.	(4)	30.	(2)	38.	(1)	46.	(2)	54.	(3)		
7.	(1)	15.	(4)	23.	(4)	31.	(4)	39.	(2)	47.	(2)	55.	(2)		
8.	(3)	16.	(2)	24.	(1)	32.	(4)	40.	(2)	48.	(3)	56.	(4)		

61.	(6)	63.	(67)	65.	(2)	67.	(4)	69.	(4)	71.	(4)	73.	(4)	75.	(7)
62.	(3)	64.	(204)	66.	(5)	68.	(2)	70.	(4)	72.	(3)	74.	(4)	ĺ	

17. ALCOHOLS, PHENOLS AND ETHERS

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(2)	9.	(2)	17.	(1)	25.	(2)	33.	(2)	41.	(1)	49.	(2)	57.	(4)
2.	(1)	10.	(1)	18.	(2)	26.	(3)	34.	(2)	42.	(4)	50.	(4)	58.	(1)
3.	(4)	11.	(2)	19.	(3)	27.	(3)	35.	(2)	43.	(2)	51.	(2)	59.	(3)
4.	(4)	12.	(4)	20.	(2)	28.	(1)	36.	(4)	44.	(2)	52.	(4)	60.	(2)
5.	(4)	13.	(2)	21.	(2)	29.	(1)	37.	(2)	45.	(1)	53.	(2)		
6.	(3)	14.	(1)	22.	(4)	30.	(3)	38.	(2)	46.	(1)	54.	(3)		
7.	(2)	15.	(1)	23.	(2)	31.	(4)	39.	(1)	47.	(3)	55.	(3)		
8.	(1)	16.	(3)	24.	(1)	32.	(4)	40.	(3)	48.	(1)	56.	(4)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(60)	63.	(3)	65.	(12)	67.	(5)	69.	(78)	71.	(88)	73.	(3)	75.	(5)
62.	(3)	64.	(5)	66.	(23)	68.	(32)	70.	(3)	72.	(3)	74.	(88)		

18. ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(4)	9.	(3)	17.	(2)	25.	(3)	33.	(2)	41.	(4)	49.	(2)	57.	(2)
2.	(3)	10.	(3)	18.	(4)	26.	(3)		(4)		(3)	50.	(3)	58.	(2)
3.	(1)	11.	(2)	19.	(3)	27.	(1)	35.			(3)	51.	(1)	59.	(4)
4.	(3)	12.	(1)	20.	(1)	28.			(1)		(4)	52.	(2)	60.	(1)
5.	(1)	13.	(1)	21.	(3)	29.	(2)	37.	(1)		(2)	53.	(4)		
6.	(3)	14.	(3)	22.	(1)	30.	(1)	38.	(1)	46.	(4)	54.	(1)		
7.	(1)	15.	(2)	23.	(2)	31.	(1)	39.	(3)	47.	(2)	55.	(1)		
8.	(3)	16.	(1)	24.	(2)	32.	(1)	40.		48.	(1)	56.	(3)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(3)	63.	(82)	65.	(103)	67.	(110)	69.	(60)	71.	(96)	73.	(4)	75.	(2)
62.	(100)	64.	(1)	66.	(1)	68.	(3)	70.	(2)	72.	(1)	74.	(3)		

19. AMINES

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(4)	9.	(4)	17.	(3)	25.	(3)	33.	(2)	41.	(1)	49.	(1)	57.	(1)
2.	(1)	10.	(1)	18.	(2)	26.	(2)	34.	(2)	42.	(3)	50.	(4)	58.	(3)
3.	(1)	11.	(2)	19.	(2)	27.	(4)	35.	(1)	43.	(1)	51.	(1)	59.	(1)
4.	(3)	12.	(1)	20.	(4)	28.	(2)	36.	(3)	44.	(4	52.	(2)	60.	(4)
5.	(2)	13.	(3)	21.	(2)	29.	(3)	37.	(2)	45.	(1)	53.	(3)		
6.	(3)	14.	(4)	22.	(4)	30.	(3)	38.	(4)	46.	(3)	54.	(1)		
7.	(2)	15.	(1)	23.	(2)	31.	(4)	39.	(1)	47.	(2)	55.	(3)		
8.	(3)	16.	(1)	24.	(2)	32.	(4)	40.	(1)	48.	(1)	56.	(1)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(28)	63.	(3)	65.	(3)	67.	(75)	69.	(78)	71.	(5)	73.	(93)	75.	(1)
62.	(1)	64.	(1)	66.	(5)	68.	(94)	70.	(99)	72.	(4)	74.	(20)		

20. BIOMOLECULES

SINGLE OPTION CORRECT TYPE QUESTIONS (01 TO 60)

1.	(1)	9.	(4)	17.	(4)	25.	(2)	33.	(2)	41.	(2)	49.	(2)	57.	(4)
2.	(1)	10.	(3)	18.	(4)	26.	(2)	34.	(3)	42.	(3)	50.	(1)	58.	(3)
3.	(1)	11.	(3)	19.	(4)	27.	(2)	35.	(3)	43.	(3)	51.	(1)	59.	(1)
4.	(2)	12.	(3)	20.	(2)	28.	(3)	36.	(3)	44.	(1)	52.	(2)	60.	(3)
5.	(3)	13.	(2)	21.	(1)	29.	(1)	37.	(2)	45.	(3)	53.	(1)		
6.	(1)	14.	(4)	22.	(4)	30.	(3)	38.	(2)	46.	(4)	54.	(4)		
7.	(1)	15.	(2)	23.	(1)	31.	(4)	39.	(3)	47.	(3)	55.	(1)		
8.	(1)	16.	(1)	24.	(1)	32.	(2)	40.	(1)	48.	(4)	56.	(1)		

INTEGER TYPE QUESTIONS (61 TO 75)

61.	(6)	63.	(4)	65.	(3)	67.	(3)	69.	(3)	71.	(2)	73.	(4)	75.	(4)
62.	(4)	64.	(4)	66.	(11)	68.	(6)	70.	(2)	72.	(8)	74.	(8)		

Hints

8

Solutions

STOICHIOMETRY AND REDOX REACTIONS

Single Option Correct Type Questions (01 to 60)

1. (4)

Sol: Let original sample weighs x g

water =
$$\frac{12}{100}$$
 x, silica = $\frac{45}{100}$ x

Impurities =
$$\frac{43}{100}$$
 x

Let Partially dried sample weighs y g

Water =
$$\frac{8}{100}$$
 y

Since no evaporation of silica & impurities. So,

$$\frac{45}{100} x + \frac{43}{100} x = \frac{92}{100} y \Rightarrow x = \frac{92}{88} y$$

% of silica in partially dried sample = $\frac{\frac{45}{100} \times x}{y}$

$$\times 100 = 47\%$$

2. (1)

Sol: Molar mass of mixture will be

$$M_{mix} =$$

 $\frac{n \times Molar \text{ mass of } CH_4 + n \times Molar \text{ mass of } C_2H_6}{n+n}$

$$M_{\text{mix}} = \frac{n(16+30)}{2n} = 23$$

Vapour density $\Rightarrow \frac{M_{\text{mix}}}{2} = \frac{23}{2} = 11.5$

3. (1)

Sol: $C_X H_Y + O_2 \longrightarrow CO_2 + H_2O$ 6g excess mass of Hydrocarbon = 6 g

mass of carbon =
$$\frac{12}{44}$$
 ×mass of $CO_2 = \frac{12}{44}$ × 17.6

mass of Hydrogen =
$$\frac{2}{18}$$
 × mass of H₂O = $\frac{2}{18}$ × 10.8 = 1.2 g.

Total mass of carbon & Hydrogen = 4.8 + 1.2 = 6 g.

Mass of Hydrocarbon = Total mass of (C + H) = 6 g.

Law of conservation of mass.

4. (1)

Sol: (1) No. of atom of
$$(C_4H_{10}) = \frac{1}{58} \times 14 \text{ N}_a$$

(2) No. of atom of
$$(N_2) = \frac{1}{28} \times 2 N_a$$

(3) No. of atom of (Ag) =
$$\frac{1}{108}$$
 × 2 N_a

(4) No. of atom of water =
$$\frac{1}{18} \times 3 \text{ N}_a$$

Hence greatest No. of atom = C_4H_{10}

5. (4)

Sol:
$$\frac{4.4}{x} = \frac{2.24}{22.4}$$
 (where x is mol. wt of gas)

$$x = 4.4 \times 10$$

x = 44 (N₂O and CO₂ both gases may be possible).

6 (1)

Sol: 14 g N³⁻ ions have =8N_A valence electrons
4.2 g of N³⁻ ions have =
$$\frac{8N_A \times 4.2}{14}$$
 = 2.4N_A

Sol:
$$n = \frac{M.F.M}{E.F.M} = \frac{120}{30}$$

$$\Rightarrow$$
 n = 4

$$\Rightarrow$$
 M.F = n × CH₂O

$$= 4 \times CH_2O$$
$$= C_4H_8O_2$$

Sol: Urea-
$$NH_2$$
 - CO - NH_2

: 60 g of urea contains 28 g of nitrogen

$$\frac{28}{60} \times 100 = 46.66 \%$$
 Nitrogen

Sol:
$$C_xH_y + O_2 \longrightarrow CO_2 + H_2O$$

$$x \times \frac{500}{22400} = 1 \times \frac{2.5}{22.4}$$

$$x = 5$$

POAC on H

$$y \times \frac{500}{22400} = 2 \times \frac{3}{22.4}$$

$$y = 12$$

Hence hydrocarbon is C₅H₁₂.

10. (4

Sol: On balancing the reaction,

$$C_4H_{10} + \frac{13}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$$

$$\frac{\text{Mole of C}_4 H_{10}}{1} = \frac{\text{Mole of CO}_2}{4 \times 1}$$

Hence mole of $CO_2 = 4 \times \text{mole of } C_4H_{10}$ $4 \times 0.15 = 0.60$.

Sol:
$$A + 2B \rightarrow C$$

$$\frac{5}{1}$$
 $\frac{8}{2}$ (B is L.R)

From mole-mole analysis

$$\frac{8}{2} = \frac{n_C}{1}$$

$$n_C = 4$$
 mole of C.

Sol: LR
$$\rightarrow$$
 HCl, so Mole of H₂ = $\frac{\text{Mole of HCl}}{2}$

$$=\frac{0.52}{2}=0.26$$

Sol:
$$M_{\text{final}} = \frac{M_1 V_1 + M_2 V_2}{V_1 + V_2 + V_{\text{water}}}$$
; 0.25 =

$$\frac{0.6 \times 250 + 0.2 \times 750}{250 + 750 + V_{water}}$$

So,
$$V_{water} = 200 \text{ ml}$$
.

14. (1)

Sol: Total mass of solution = (15 + 35) gram = 50 gram

mass percentage of methyl alcohol

$$= \frac{\text{Mass of methyl alcohol}}{\text{Mass of solution}} \times 100 = \frac{15}{50} \times$$

$$100 = 30\%$$

15. (3)

Sol:
$$2(+2) + 2x + 7(-2) = 0$$

$$\therefore$$
 $x = +5$

16. (4)

Sol: Br₂ undergoes disproportionation, i.e. it undergoes both oxidation & reduction.

17. (4)

Sol: In 4th reaction, N undergoes oxidation while Cr undergoes reduction.

18. (2)

Sol: In H_2O_2 oxidation state of oxygen is -1.

It can undergo both oxidation as well as reduction

$$O^--e^- \rightarrow O$$
 (Oxidation)

$$O^- + e^- \rightarrow O^{2-}$$
 (reduction)

Hence it can act both as oxidizing as well as reducing agent.

19. (2)

Sol: For equal number of sulphate ion in both ferrous and ferric sulphate, we have

$$\frac{Fe^{2+}}{Fe^{3+}} = \frac{1}{2/3}$$

$$\Rightarrow \frac{Fe^{2+}}{Fe^{3+}} = \frac{3}{2}.$$

20. (3)

Sol:
$$\frac{\text{mole of H atom}}{\text{mole of O atom}} = \frac{12}{4}$$

$$\Rightarrow$$
 mole of O atom = $\frac{\text{mole of H atom}}{3}$

$$\Rightarrow$$
 mole of O atom = $\frac{3.18}{3}$

mole of O atom = 1.06

21. (4)

Sol: The molecular formula for isobutane & butane is same, that is C_4H_{10} .

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$$

1 Kg
$$C_4H_{10} = \frac{1000}{58} = 17.24$$
 moles

Moles of
$$O_2$$
 required = $17.24 \times \frac{13}{2}$

Mass of O₂ in Kg =
$$17.24 \times \frac{13}{2} \times \frac{32}{1000}$$

= 3.58 **22.** (1)

Sol:
$$2VO + 3Fe_2O_3 \longrightarrow 6FeO + V_2O$$

Mole
$$\frac{6.7}{67} = 0.1$$
 $\frac{4.8}{160} = 0.03$

$$\frac{0.1}{2} \frac{0.03}{3}$$
 (Fe₂O₃ is L.R)

mole-mole analysis

$$\frac{0.03}{3} = \frac{n_{FeO}}{6}$$
 (Here n = mole)

$$n_{FeO} = 0.01 \times 6$$

$$= 0.06$$

Mass of FeO =
$$0.06 \times 72 = 4.32$$
 g.

23. (2)

Sol: (I) 100 g solution contains 40 g NaOH

∴ 50 g solution contains 20 g NaOH

(II) 100 mL solution contains 50 g NaOH

∴ 50 mL solution contains 25 g NaOH

(III) 1000 mL solution contains (15 \times 40) g NaOH

$$\therefore 50 \text{ g solution contains } \left(\frac{15 \times 40 \times 50}{1000 \times 1}\right) \text{g}$$

NaOH = 30 g NaOH

24. (1)

Sol: Let W g water is added to 16 g CH₃OH

$$molality = \frac{16 \times 1000}{W \times 32} = \frac{500}{W}$$

$$\frac{500}{W} = \frac{x_A \times 1000}{(1 - x_A)m_B} = \frac{0.25 \times 1000}{0.75 \times 18}$$

W = 27 g

25. (3)

26.

Sol: For a completely balanced equation, net charge on reactant side & product side must be equal.

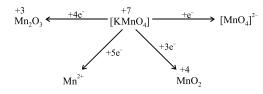
$$-1 + 4 + x (-1) = 0$$

 $x = +3$

 $X - \neg$ (1)

Sol: Molar mass = 108 g/mole

Element	Wt. Ratio	Wt. ratio/Atomic mass	Simple Ratio	Simple Integer ratio
С	9 x	$\frac{9x}{12} = \frac{3x}{4}$	3	3
Н	1 x	х	4	4
N	3.5 x	$\frac{3.5x}{14} = \frac{x}{4}$	1	1


Empirical mass = $12 \times 3 + 4 + 14 = 54$

$$n = \frac{108}{54} = 2$$

 \therefore Molecular Formula = $C_6H_8N_2$

27. (3)

Sol:

Sol: Molarity =
$$\frac{\text{Moles of solute}}{\text{Vol. of solution (in L)}}$$

= $\frac{6.02 \times 11^{20} / 6.02 \times 10^{23}}{100 / 1000} = 0.01 \text{ M}$

Sol: Final Molarity =
$$\frac{M_1V_1 + M_2V_2}{V_1 + V_2}$$

= $\frac{1.5 \times 480 + 1.2 \times 520}{480 + 520} = 1.344 \text{ M}$

Sol: 8 moles of O-atom are contained by 1 mole
$$Mg_3(PO_4)_2$$
.

Hence, 0.25 moles of O-atom =
$$\frac{1}{8} \times 0.25$$

= 3.125 × 10⁻² mole Mg₃(PO₄)₂.

Sol: molality (m) =
$$\frac{M}{1000d - MM_1} \times 1000$$

M = Molarity

 M_1 = Molecular mass of solute

d = density

$$= \frac{2.05}{(1000 \times 1.02) - (2.05 \times 60)} \times 1000 = 2.28 \text{ mol}$$

 kg^{-1}

Sol:
$$2Al(s) + 6HCl(aq) \longrightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) + 3H_2(g)$$

3 mole H₂ from 6 mole HCl consumed.

 $\therefore \ 1 \ mole \ H_2 \ from \ 2 \ mole \ HCl \ consumed.$

1/2 mole (11.2 Lit) H_2 from 1 mole HCl consumed.

Sol: 3.6 M solution means 3.6 mole of H₂SO₄ is present in 1000 mL of solution

 \therefore Mass of 3.6 moles of H₂SO₄ is = 3.6 \times 98 g = 352.8 g

 \therefore Mass of H₂SO₄ in 1000 ml of solution = 352.8 g

Given, 29g of H₂ SO₄ is present in 100 g of solution

$$\therefore \quad 352.8 \quad g \quad \text{of} \quad H_2SO_4 \quad \text{is} \quad \text{present} \quad \text{in} \\ \left(\frac{100}{29} \times 352.8\right) g \ \text{of solution}$$

Now density =
$$\frac{\text{Mass}}{\text{Volume}} = \frac{100 \times 352.8}{29 \times 1000} = 1.22$$

g/mL

Sol:
$$X_{\text{Methyl alcohol}} = \frac{5.2}{5.2 + \frac{1000}{18}} = 0.086$$

Sol: Molarity =
$$\frac{\text{mols of solute}}{\text{volume of sol. (in L)}}$$

= $\frac{120 \times 1.15}{60 \times 1120} \times 1000 = 2.05 \text{ M}$

Sol:

$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$$

 $vf = 5$ $vf = 2$

Balanced Equation:

$$2MnO_4^- + 5C_2O_4^{2-} + 16 H^+ \longrightarrow 2Mn^{2+} + 10$$

 $CO_2 + 8H_2O$

So,
$$x = 2$$
, $y = 5 \& z = 16$.

37. (4

Sol: H₂O₂ acts as reducing agent when it releases electrons.

Sol:
$$\frac{n_{O_2}}{n_{N_2}} = \frac{\frac{\left(m_{O_2}\right)}{\left(M_{O_2}\right)}}{\frac{\left(m_{N_2}\right)}{\left(M_{N_2}\right)}} = \left(\frac{m_{O_2}}{m_{N_2}}\right) \frac{28}{32} = \frac{1}{4} \times \frac{28}{32} = \frac{7}{32}$$

Sol: 75 kg person contain 10% hydrogen i.e. 7.5 kg Hydrogen.

If all H atom are replaced by ²H, the weight of Hydrogen become twice i.e. it increases by 7.5 kg.

Sol:
$$n_A = 0.1$$
, $n_B = 1$, $n_C = 0.036$
Limiting reagent = C

$$\Rightarrow$$
 $n_{AB_2C_3}$ formed = $\frac{0.036}{3}$ = 0.012

$$\Rightarrow$$
 MM_(AB₂C₃) = $\frac{4.8}{0.012}$ = 400

$$\Rightarrow 60 + 2x + 80 \times 3 = 400$$
$$x = 50$$

Sol:
$$C_nH_{2n+2} + \left(\frac{3n+1}{2}\right)O_2 \longrightarrow nCO_2 + (n+1)H_2O$$

Since volumes are measured at constant T & P So, Volume ∝ mole

$$\therefore \quad n_{alkane} = \left(\frac{3n+1}{2}\right) \times n_{O_2}$$

$$5 = \frac{3n+1}{2} \times 25$$

Alkane is propane (C_3H_8) .

42.

8 g sulphur present in = 100 g of organic Sol: compound.

$$\therefore 32 \text{ g sulphur present in} = \frac{100}{8} \times 32$$

= 400 g of organic compound.

Hence, minimum molecular weight compound = 400 g/mol

In MnO_4^- & $[Cu(CN)_4]^{2-}$, Mn & Cu are in their Sol: highest stable oxidation state. i.e +7 and +2 respectively.

Sol: % of Na =
$$\frac{\text{mass of sodium}}{\text{molecular mass}} \times 100$$

$$\Rightarrow$$
 7 = $\frac{23}{M} \times 100$

$$M = \frac{23 \times 100}{7} = 328.57 \text{ g/mol}$$

Sol: Mass of NaCl =
$$10 \times 0.96 = 9.6$$
 g

moles of NaCl =
$$\frac{9.6}{58.5}$$

no. of molecules of NaCl = $\frac{9.6}{59.5} \times 6.023 \times 10^{23}$

$$\geq 10^{23}$$

46. **(1)**

Sol: 1. It is a fact.

2.
$$2H_2 + O_2 \longrightarrow 2H_2O$$

Initial mole 2 3

Final mole 0 3-1=2

3.
$$C + O_2 \longrightarrow CO_2$$

$$\underline{\underline{w}} \quad \underline{\underline{w}}$$

Here C is limiting reagent.

47.

Sol: Reduction
$$BiO_3^- + Mn^{2^+} \rightarrow Bi^{3^+} + MnO_4^-$$
Oxidation

(i)
$$2e^- + 6H^+ + BiO_3^- \longrightarrow Bi^{3+} + 3H_2O$$

(ii)
$$4H_2O + Mn^{2+} \longrightarrow MnO_4^- + 8H^+ + 5e^-$$

(i)
$$\times$$
 5 + (ii) \times 2, we get 14 H⁺ + 5 BiO₃⁻ +

$$5Mn^{2+} \longrightarrow 5Bi^{3+} + 2MnO_4^- + 7 H_2O$$

Hence, (2) is the correct balanced reaction.

48. **(4)**

Sol: Explanation: Mol. wt. of NaNO₃ = 85

70 mg of Na⁺ are present in 1 mL

50 mL of solution contains $50 \times 70 = 3500$ mg $= 3.5 \text{ g Na}^+ \text{ ion}$

23 g of Na⁺ are present in 85 g of NaNO₃

3.5 g of Na⁺ are present in
$$\frac{85}{23} \times 3.5 = 12.934$$

g of NaNO₃

49. (3)

Sol: At 4° C i.e. 277 K density of water = 1 g/ml

 \therefore 1 kg water \Rightarrow 1000 ml water = 1 lit.

:. Molality & molarity remains same.

50. (3)

Sol: Mole of NaCl = $\frac{5.85}{58.5}$ = 0.1

Molarity =
$$\frac{0.1}{1}$$
 = 0.1 M

Moles in 1 ml of solution = $MV = 0.1 \times 10^{-3} = 10^{-4}$ mole.

Number of ions in 1 ml = $2 \times 10^{-4} \times 6.023 \times 10^{23} = 1.204 \times 10^{20}$.

51. (2)

Sol: Molarity = M

Let volume of be 1 ltr.

 \therefore mass of solvent = 1000 d – M × M₂

Molality =
$$m = \frac{M}{1000d - MM_2} \times 1000$$

52. (1)

Sol: $C + O_2 \xrightarrow{\Delta} CO_2$

12g C requires 22.4 L O₂ at STP

$$\therefore$$
 1000 g C = $\frac{22.4}{12} \times 1000$

or 1866.67 L O_2 .

53. (2)

Sol: $KClO_3 \rightarrow KCl + O_2$

Applying POAC for O atoms in the eqn.(i), moles of O in KClO₃ = moles of O in O₂

 $3 \times \text{moles of KClO}_3 = 2 \times \text{moles of O}_2$

$$3 \times \frac{\text{wt.of KClO}_3}{\text{mol.wt.of KClO}_3}$$

$$= 2 \times \frac{\text{volume of O}_2 \text{ at NTP(mL)}}{22400}$$

Wt. of KClO₃ =
$$\frac{2 \times 146.8 \times 122.5}{3 \times 22400}$$

= 0.5352 g.

In the second reaction:

The amount of $KClO_3$ left = 1 - 0.5352

= 0.4648 g.

We have, $KClO_3 \rightarrow KClO_4 + KCl$

0.4648 g.

Applying POAC for O atoms,

moles of O in $KClO_3$ = moles of $KClO_4$

 $3 \times \text{moles of KClO}_3 = 4 \times \text{moles of KClO}_4$

$$3 \times \frac{\text{wt.of KClO}_3}{\text{mol.wt.of KClO}_3}$$

$$= 4 \times \frac{\text{wt.of KClO}_4}{\text{mol. wt.of KClO}_4}$$

Wt. of KClO₄ =
$$\frac{3 \times 0.4648 \times 138.5}{122.5 \times 4}$$
 = 0.3941 g.

.....(ii)

Wt. of residue = 1 - wt. of Oxygen

$$= 1 - \frac{146.8}{22400} \times 32 \text{ g} = 0.7903 \text{ g}.$$

:. % of KClO₄ in the residue =
$$\frac{0.3941}{0.7903} \times 100$$

= 49.87%.

54. (1)

Sol: Consider that mass of NaCl = xg

 $\therefore \text{ Moles of NaCl will be} = \frac{x}{58.5} \text{ and Moles}$

of KCl will be =
$$\frac{64 - x}{74.5}$$

By using POAC for Na and \boldsymbol{K}

: Moles of NaCl \times 1 = Moles of Na₂SO₄ \times 2

or Moles of Na₂SO₄ = Moles of NaCl ×
$$\frac{1}{2}$$

: Moles of KCl \times 1 = Moles of K₂SO₄ \times 2

or Moles of
$$K_2SO_4 = Moles of KCl \times \frac{1}{2}$$

Total weight of Na₂SO₄ and K₂SO₄ is 76 g

Hence
$$\frac{1}{2} \times \frac{x}{58.5} \times 142 + \frac{1}{2} \times \frac{64 - x}{74.5} \times 174$$

$$\Rightarrow$$
 x = 27.495

% mass of NaCl =
$$\frac{27.495}{64}$$
 ×100 = 42.96%

Sol: Moles of
$$Al_2(SO_4)_3 = M \times V = 0.15 \times 0.1 = 0.015$$

Mass of
$$Al_2(SO_4)_3 = Mole \times Molar mass = 0.015 \times 342 = 5.13 g.$$

Moles of Al³⁺ = 2 × moles of Al₂(SO₄)₃ = 2 ×
$$0.015 = 0.03$$
.

No. of Al³⁺ ions =
$$0.03 \times 6.023 \times 10^{23} = 1.81 \times 10^{22}$$
 ions.

Sol: No. of carbon atom in glucose =
$$\frac{1.71}{342} \times 12 \text{ N}_a$$

= 3.6×10^{22}

Sol:
$$2A + 3B \longrightarrow X + 2Y$$

 $2 \quad 1 \quad 0 \quad 0$
 $\frac{2}{2} \quad \frac{1}{3} \text{ (L.R.)}$

$$\frac{4}{3}$$
 0 $\frac{1}{3}$

Sol: (I)
$$[Cl^-] = \frac{50 \times 3 + 150 \times 1 \times 3}{200} = \frac{600}{200} = 3 \text{ M}$$

(II) molality =
$$\frac{0.1}{0.9 \times 18} \times 1000 = 6.17 \text{ m}$$

(III) Molality =
$$\frac{20 \times 1000}{60 \times 80}$$
 = 4.17 m (IV)

Molarity of HCl =
$$\frac{\frac{10.95}{36.5}}{100} \times 1000 = 3 \text{ M}$$

Integer Type Questions (61 to 75)

Sol: Gram mol. wt. of
$$C_6H_{12}O_6 = 180$$
 g i.e. wt. of 6.023×10^{23} molecules of $C_6H_{12}O_6 = 180$ g So, wt. of 1 molecule of $C_6H_{12}O_6 = 180$ g

$$\frac{180}{6.023 \times 10^{23}} = 2.988 \times 10^{-22} \text{ g}.$$

Sol:
$$\frac{\text{wt. of metal hydroxide}}{\text{wt. of metal oxide}} = \frac{\text{EM} + \text{EOH}^-}{\text{EM} + \text{EO}^-}$$
$$= \frac{1.520}{0.995} = \frac{\text{x} + 17}{\text{x} + 8} = 1.520\text{x} + 1.520\text{x} + 8$$
$$= 0.995\text{x} + 0.995\text{x} + 17$$
$$1.520\text{x} + 12.160 = 0.995\text{x} + 16.915$$
$$\text{or } 0.525\text{x} = 4.755$$
$$\text{x} = \frac{4.755}{0.525} = 9$$
.

Sol:
$$194 \times \frac{28.9}{100} = 56.06 \text{ g}$$

No. of Nitrogen = $\frac{56.06}{14} = 4$

So, V.D. =
$$\frac{0.178 \times 22.4}{2}$$
 = 1.9936 ≈ 2

Sol:
$$V.D = \frac{(M.wt)_{(CO)_x}}{2}$$

 $70 = \frac{28x}{2}$
 $x = 5$

Sol:
$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$$

From Gay lussac's law
 $C_2H_4 & O_2$ are in 1:3 vol. ratio
i.e O_2 will be 60 ml.

Sol:
$$M_1V_1 + M_2V_2 = M_R [V_1 + V_2]$$

 $1 \times 500 + 1 \times 500 = M_R [500 + 500]$
 $M_R = 1$.

Sol:
$$[C\bar{I}] = \frac{300 \times 3 + 200 \times 4 \times 2}{500} = \frac{2500}{500} = 5 \text{ M}$$

Sol: Let the oxidation state of
$$Cr$$
 is x .

$$x + 4(0) + 2(-1) = +1$$

$$x - 2 = +1$$

or,
$$x = +1 + 2 = +3$$
.

Sol:
$$M_f = \frac{M_1 V_1 + M_2 V_2}{V_1 + V_2} = \frac{0.5 \times \frac{3}{4} + 2 \times \frac{1}{4}}{1}$$

= 0.875 M

moles of C_2H_5OH in V ml = moles of H_2O in 175 ml

Now,
$$\frac{\text{wt.of } C_2H_5OH}{\text{mol. wt. of } C_2H_5OH} =$$

$$\frac{\text{wt.of H}_2\text{O}}{\text{mol.wt.of H}_2\text{O}}$$

or,
$$\frac{0.789 \times V}{46} = \frac{1.0 \times 175}{18}$$

$$V = 566.82 \text{ ml}.$$

Sol:
$$0.050 \times 2 = \frac{0.10 \times 2 \times V - 50 \times 0.10 \times 1}{V + 50}$$

$$\Rightarrow$$
 V = 100 mL

$$2Al + \frac{3}{2}O_2 \longrightarrow Al_2O_3$$

From mole-mole analysis

$$\frac{n_{Al}}{2} = \frac{n_{O_2}}{3/2} \text{ (here n= mole)}$$

$$n_{Al} = \frac{2}{3}$$

$$mass_{Al} = \frac{2}{3} \times 27 = 18 \text{ g}.$$

Sol:
$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$$

Moles of H_2 evolved = 2

$$\therefore$$
 Moles of HCl required = 4

$$\therefore \frac{V \times 1.2 \times 0.365}{36.5} = 4 \text{ ; } V = 333.33 \text{ ml}$$

Sol: Let
$$Ca_3(PO_4)_2$$
 is x-mole

H₃PO₃ is y-mole

Given, Ca_2 (PO₄)₂ and H_3PO_3 contains same number of 'P' atoms.

$$\Rightarrow 2x = y \Rightarrow \frac{x}{y} = \frac{1}{2}$$

$$\frac{\text{moles of 'O' in } Ca_3(PO_4)_2}{\text{moles of 'O' in } H_3PO_3} = \frac{8x}{3y} = \frac{4}{3}$$

STRUCTURE OF ATOM

Single Option Correct Type Questions (01 to 60)

Sol:
$$E = \frac{nhc}{\lambda} \implies n = 28$$

Sol: For photoelectric effect to take place,
$$E_{light} \! \geq \! W$$

$$\therefore \frac{hc}{\lambda} \ge \frac{hc}{\lambda_0} \text{ or } \lambda \le \lambda_0.$$

Sol: Power =
$$\frac{nhC}{\lambda \times t}$$

$$40 \times \frac{80}{100} = \frac{n \times 6.62 \times 10^{-34} \times 3 \times 10^8}{620 \times 10^{-9} \times 20}$$

$$\implies n = 2 \times 10^{21}$$

Sol:
$$E_1$$
 for $Li^{+2} = E_1$ for $H \times Z^2 = E_1$ for $H \times 9$

$$E_1$$
 for $He^+ = E_1$ for $H \times Z^2_{He} = E_1$ for $H \times 4$

or
$$E_1$$
 for $Li^{+2}=\frac{9}{4}\,E_1$ for $He^+=19.6\times 10^{-18}\times$

$$\frac{9}{4} = 44.10 \times 10^{-18} \text{ J/atom}$$

Sol:
$$E_n = \frac{-13.6Z^2}{n^2}$$

$$E_1 = -13.6Z^2 = 100$$
 unit

$$E_2 = \frac{-13.6 Z^2}{4} = 25 \text{ unit}$$

Sol:
$$E_1$$
 for $Li^{+2} = E_1$ for $H \times Z^2$ [for Li, $Z = 3$]

$$= 13.6 \times 9 = 122.4 \text{ eV}$$

$$= 13.6 \times 9 = 122.4 \text{ eV}$$
7. (3)
Sol: $\frac{1}{\lambda_{lyman}} = R_H \left(\frac{1}{1}\right)$

$$\frac{1}{\lambda_{Balmer}} = R_H \left(\frac{1}{4}\right) \Rightarrow \frac{\lambda_{Balmer}}{\lambda_{Lyman}} = 4$$

Sol:
$$\text{mvr} = \frac{n\hbar}{2\pi} = \frac{5\hbar}{2\pi} = 2.5 \frac{\hbar}{\pi}$$

For third line of Brackett series $(4 \rightarrow 7)$

$$\frac{1}{\lambda} = R \left(\frac{1}{16} - \frac{1}{49} \right) \Rightarrow \lambda = \frac{784}{33 R}$$

For 1st line of Balmer series $(3 \rightarrow 2)$

$$E_3 - E_2 = \frac{hc}{\lambda}$$

For Balmer series $(n_1 = 2 ; n_2 = 3, 4....\infty)$ Sol:

Sol:
$$\lambda = \frac{h}{mv} = 1.33 \times 10^{-3} \text{ Å}$$

Sol:
$$\Delta p \cdot \Delta x = \frac{h}{4\pi}$$

$$\Rightarrow \Delta x = \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 1 \times 10^{-5}} = 5.27 \times 10^{-30} \text{ m}.$$

14. (1)

Sol: $\lambda = \frac{h}{mv} = 0.416 \text{ nm}$

15. (1)

Sol: For a charged particle $\lambda = \frac{h}{\sqrt{2mqV}}$,

 $\therefore \quad \lambda \propto \frac{1}{\sqrt{V}} \, .$

16. (1)

Sol: $\Delta x \cdot \Delta p \simeq \frac{h}{4\pi} \Rightarrow \Delta v = 3.499 \times 10^{-24} \text{ ms}^{-1}$

17. (1)

Sol: (1) This set of quantum number is permitted.

(2) This set of quantum number is not permitted as value of 's' cannot be zero.

(3) This set of quantum number is not permitted as the value of 'l' cannot be equal to 'n'.

(4) This set of quantum number is not permitted as the value of 'm' cannot be greater than 'l'.

18. (3)

Sol: M- Shell (n = 3); maximum no. of electrons in a shell = $2n^2$.

19. (4)

Sol: n = 4, $\ell = 2$, $s = -\frac{1}{2}$ or $+\frac{1}{2}$

20. (1)

Sol: Magnetic moment = $\sqrt{n(n+2)} = \sqrt{24}$ B.M.

 \therefore No. of unpaired electron = 4.

 $X_{26}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$.

To get 4 unpaired electrons, outermost configuration will be 3d⁶.

 \therefore No. of electrons lost = 2 (from 4s²).

 \therefore n=2.

21. (4)

Sol: For p-subshell, $\ell = 1$.

22. (4)

Sol: For 1st line of Balmer series

$$\overline{v}_1 = R(3)^2 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = 9R\left(\frac{5}{36} \right) = \frac{5}{4}R$$

For last line of Pachen series

$$\bar{v}_2 = R_H(3)^2 \left[\frac{1}{(3)^2} - \frac{1}{\infty} \right] = R$$

so,
$$\overline{v}_1 - \overline{v}_2 = \frac{5R}{4} - R = \frac{R}{4}$$
.

23. (3)

Sol: $n_1 + n_2 = 4 \\ n_1 - n_2 = 2$ so $n_1 = 3$ and $n_2 = 1$.

24. (2)

Sol: Shortest wave length of Lyman series of H-

$$\frac{1}{\lambda} = \frac{1}{x} = R \left[\frac{1}{(1)^2} - \frac{1}{(\infty)^2} \right] \quad \text{so, } x = \frac{1}{R}$$

For Balmes series

$$\frac{1}{\lambda} = R (1)^2 \left\{ \frac{1}{(2)^2} - \frac{1}{(3)^2} \right\}$$

$$\frac{1}{\lambda} = \frac{1}{x} \times \frac{5}{36} \qquad \text{so,} \qquad \lambda = \frac{36x}{5}$$

25. (4

Sol: According to energy, $E_{4 \rightarrow 1} > E_{3 \rightarrow 1} > E_{2 \rightarrow 1} > E_{3 \rightarrow 2}$.

According to energy, Violet > Blue > Green > Red.

 \therefore Red line \Rightarrow 3 \rightarrow 2 transition.

26. (3)

Sol: $\Delta x = 2\Delta p$

$$\Delta x \cdot \Delta p = \frac{\hbar}{2} = \frac{h}{4\pi}$$

$$\Rightarrow 2\Delta p \cdot m\Delta V = \frac{\hbar}{2}$$

$$\Rightarrow (\Delta V)^2 = \frac{\hbar}{4m^2}$$

or
$$\Delta V = \frac{\sqrt{\hbar}}{2m}$$
.

27. (1)

Sol: I.
$$\ell = 0$$
 O.A.M = 0

II. Possible Atomic number = 11 or 12.

III. Total spin =
$$\frac{+5}{2}$$

28. (1)

Sol: Mn²⁺ has the maximum number of unpaired electrons (5) and therefore has maximum magnetic moment.

29. (1)

Sol: $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34} \times 1000}{60 \times 10} = 11.05 \times 10^{-34} = 1.105 \times 10^{-33} \text{ metres.}$

30. (3)

Sol: For 4f orbital electrons, n = 4

$$\ell = 3 \left(because \ s \ p \ d \ f \right) m = +3, +2, +1,$$

$$0, -1, -2, -3 \ s = +1/2.$$

31. (1)

Sol: For hydrogen the energy order of orbital is 1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f.

32. (1)

Sol: The electron having same principle quantum number and azimuthal quantum number will have the same energy in absence of magnetic and electric field.

(iv)
$$n = 3, 1 = 2, m = 1$$

(v)
$$n = 3, 1 = 2, m = 0$$

have same n and l value.

33. (3)

Sol: According to Heisenberg's uncertainty principle

$$\Delta \mathbf{x} \times \Delta \mathbf{p} = \frac{h}{4\pi}$$

$$\Delta x \times (m.\Delta v) = \frac{h}{4\pi} \Rightarrow \Delta x = \frac{h}{4\pi m.\Delta v}$$

$$\Delta v = \frac{0.001}{100} \times 300 = 3 \times 10^{-3} \ ms^{-1}$$

$$\Delta x = \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 3 \times 10^{-3}}$$
$$= 1.92 \times 10^{-2} \text{m}.$$

34. (4)

Sol: I.E. = $1.312 \times 10^6 \text{ J mol}^{-1}$

The energy required to excite the electron in the atom from n = 1 to n = 2.

=
$$1.312 \times 10^6 \left[1 - \frac{1}{4} \right] = 1.312 \times 10^6 \times \frac{3}{4}$$

= $9.84 \times 10^5 \text{ J mol}^{-1}$

35. (1)

Sol: As
$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 1 \times 10^3} = 3.97 \times 10^{-10} \text{ M} = 0.397 \times 10^{-9} \text{ M} = \sim 0.40 \text{ nm}.$$

36. (2)

Sol:
$$\Delta x \times \Delta P = \frac{h}{4\pi}$$

 $\Delta x \times [m\Delta v] = \frac{h}{4\pi}$

$$\Delta v = \frac{600 \times 0.005}{100} = 0.03$$

So
$$\Delta x [9.1 \times 10^{-31} \times 0.03] = \frac{6.6 \times 10^{-34}}{4 \times 3.14}$$

$$\Delta x = \frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 0.03 \times 10^{-31}} = 1.92 \times 10^{-3} M.$$

37. (4)

Sol: Cl–Cl(g)
$$\longrightarrow$$
 2Cl(g); $\Delta H = 242 \text{ KJ mol}$
= $\frac{242 \times 10^3}{6.02 \times 10^{23}} \text{ J molecule}^{-1}$

$$E = \frac{hc}{\lambda}$$

$$\frac{242 \times 10^{-23} \times 10^3}{6.02} \, = \, \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{\lambda}$$

$$\lambda = \ \frac{6.6 \times 10^{-34} \times 3 \times 10^8 \times 6.02}{242 \times 10^{-23} \times 10^3} \ = \frac{6.6 \times 3 \times 6.02}{242}$$

 $\times~10^{-6}$

$$= 0.494 \times 10^{-6}$$

$$=494 \times 10^{-9} \,\mathrm{m} = 494 \,\mathrm{nm}$$

38. (2)

Sol: I.E. of H =
$$2.18 \times 10^{-18}$$
 J atom⁻¹
I.E. = $-E_1$
 E_1 for He⁺ is = -19.6×10^{-18} J atom⁻¹

Sol: (1) 4 p (2) 4 s (3) 3 d (4) 3 p
Acc. to
$$(n + \ell)$$
 rule, increasing order of energy
 $(4) < (2) < (3) < (1)$

Sol:
$$\frac{1}{2}mv^2 = \frac{hc}{\lambda} - \frac{hc}{\lambda_0}$$

Sol: Total no. of orbitals =
$$n^2$$
.

Sol: For shortest '
$$\lambda$$
' of hydrogen $n_1 = 1 \& n_2 = \infty$

$$\frac{1}{\lambda} = Rz^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\frac{1}{A} = R(1)^2 \left(\frac{1}{1^2} - \frac{1}{\infty^2} \right) \Rightarrow R = \frac{1}{A}$$

for longest ' λ ' of He⁺ $n_1 = 3 n_2 = 4$

$$\frac{1}{\lambda} = \frac{1}{A} (2)^2 \left(\frac{1}{3^2} - \frac{1}{4^2} \right) = \frac{1}{A} \times \frac{7}{36} \text{ or } \lambda = \frac{36A}{7}$$

Sol:
$$r_n = 52.9 \left(\frac{n^2}{1} \right) pm = 211.6 pm (for H-atom)$$

$$\therefore$$
 n = 2

Higher orbit to $n = 2 \Rightarrow$ Balmer series

44. (3)

Sol: (1) Energy of ground state of He⁺
=
$$-13.6 \times 2^2 = -54.4 \text{ eV}$$
 (S)

(2) Potential energy of I orbit of H-atom
=
$$-27.2 \times 1^2 = -27.2 \text{ eV}$$
 (Q)

(3) Kinetic energy of II excited state of
$$He^+$$

$$= 13.6 \times \frac{2^2}{3^2} = 6.04 \text{ eV} \qquad (P)$$

(R)

(4) Ionisation potential of He⁺
=
$$13.6 \times 2^2 = 54.4 \text{ V}$$

Sol: Total number of nodes =
$$n - 1 = 5 - 1 = 4$$

Angular node = $\ell = 4$.

Zero radial node and 4 angular nodes.

Sol: The threshold frequency
$$(v_0)$$
 corresponding to the wavelength 6500 Å is c/λ_0 .

Therefore, the threshold energy = $h\nu_0 = hc/\lambda_0$. Substituting for h, c and λ_0 we get, threshold energy = 3.056×10^{-12} ergs.

The energy of the incident photons is given by $E = hc/\lambda_0$, since incident wavelength $\lambda = 360$ Å. Therefore, incident energy = 55.175×10^{-12} ergs.

The kinetic energy of the photoelectrons will be the difference of incident energy and threshold energy,

:. KE =
$$hv - hv_0 = (55.175 \times 10^{-12}) - (3.056 \times 10^{-12}) \text{ ergs.} = 52.119 \times 10^{-12} \text{ ergs}$$

Sol: Change in P.E.
$$= -\frac{2x}{4} + (2x) \Rightarrow \frac{3}{2}x$$

Sol:
$$V \propto \frac{Z}{n}$$

Sol:
$$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
; $n_1 = 1$, $n_2 = ?$;

$$\frac{1}{\lambda} = R \left(\frac{1}{1} - \frac{1}{n_2^2} \right) \Rightarrow n_2^2 = \frac{R\lambda}{R\lambda - 1}$$

$$\Rightarrow$$
 n₂ = $\sqrt{\frac{\lambda R}{\lambda R - 1}}$

Sol: For II to I transition,
$$\Delta E = \frac{4E}{3} - E = \frac{hc}{\lambda_{II \to I}}$$
;

$$\frac{E}{3} = \frac{hc}{\lambda_{\text{II-I}}}$$

For III to I transition,
$$\Delta E = 2E - E = \frac{hc}{\lambda}$$
 or E

$$=\frac{hc}{\lambda}$$

$$\therefore \frac{hc}{3 \times \lambda} = \frac{hc}{\lambda_{\text{II-I}}} \lambda_{\text{II-I}} = 3\lambda$$

52. (4)

Out of 6 electrons in 2p and 3p there must have one electron with m = +1 and s = -1/2 but in 3d-subshell an orbital having m = +1 may have spin quantum no. $-\frac{1}{2}$ or $+\frac{1}{2}$. Therefore,

minimum and maximum possible values are 2 and 3 respectively.

53. (1)

Sol: Energy associated with a photon of 242 nm =
$$\frac{6.625 \times 10^{-34} \times 3.0 \times 10^{8}}{242 \times 10^{-9}} = 8.21 \times 10^{-19} \text{ joule}$$

 \because 1 atom of Na for ionisation requires = 8.21 \times 10⁻¹⁹ J

 \therefore 6.023 \times 10²³ atoms of Na for ionisation requires

=
$$8.21 \times 10^{-19} \times 6.023 \times 10^{23} = 49.45 \times 10^{4} \text{ J} = 494.5 \text{ kJ mol}^{-1}$$

54. (4)

Sol: Electronic configuration : $1s^2 2s^2 2p^6 3s^1$ For 3s orbital n = 3, $\ell = 0$, m = 0, s = +1/2 or -1/2

55. (3)

Sol:
$$v \propto \frac{Z}{n}$$
; $r \propto \frac{n^2}{Z}$;

frequency of revolution = $\frac{V_n}{2\pi r_n}$;

Coulombic force of attraction = $\frac{Ze^2}{(4\pi\epsilon_0)r^2}$

56. (2)

Sol: Number of values of ℓ = total number of subshells = n.

Value of $\ell = 0, 1, 2, \dots, (n-1)$.

$$\ell = 2 \Rightarrow m = -2, -1, 0, +1, +2$$
 (5 values)
 $m = +\ell$ to $-\ell$ through zero.

57. (1)

Sol: (I)
$$2 \times \text{K.E.} = -\text{P.E}$$

$$\frac{PE}{KE} = -2$$

(II)
$$\ell_n \propto n^x$$

$$\frac{nh}{2\pi} \propto n^x$$

$$x = 1$$

(III) Potential energy = 2 total energy

(IV)
$$T_n \propto \frac{n^3}{z^2}$$

 $t = -2$

58. (4)

Sol: (I) Transition $n \to 6$ to $n \to \infty$ For Li²⁺ sample

(II) Transition $n \to 1$ to $n \to 2$ For H-atom sample

(III) Transition $n \rightarrow 1$ to $n \rightarrow 3$ For He⁺ sample

(IV) Transition $n \to 1$ to $n \to \infty$ For H-atom sample

59. (1)

Sol: The energy levels of H-atom varies from n = 1 to $n = \infty$.

60. (1)

Sol: Energy of electrons = $-13.6 \frac{Z^2}{n^2}$.

Integer Type Questions (61 to 75)

61. (912)

Sol: For Lyman series $n_1 = 1$

For shortest 'λ' of Lyman series the energy difference in two levels showing transition should be maximum

(i.e.
$$n_2 = \infty$$
) $\frac{1}{\lambda} = R_H \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right]$
= 109678 $\Rightarrow \lambda = 911.7 \times 10^{-8} = 911.7 \text{ Å}$

62. (6)

Sol: infrared lines = total lines – visible lines – UV

$$\frac{6(6-1)}{4}$$

lines =
$$\frac{6(6-1)}{2} - 4 - 5$$
 = $15 - 9 = 6$.
(visible lines = 4; $6 \rightarrow 2$, $5 \rightarrow 2$, $4 \rightarrow 2$, $3 \rightarrow 2$)

(VIsible lines = 4,
$$0 \rightarrow 2$$
, $3 \rightarrow 2$, $4 \rightarrow 2$, $3 \rightarrow 2$)
(UV lines = 5; $6 \rightarrow 1$, $5 \rightarrow 1$, $4 \rightarrow 1$, $3 \rightarrow 1$, $2 \rightarrow 1$)

Sol:
$$\Delta X . \Delta P \cong \frac{h}{4\pi}$$

$$m(\Delta X . \Delta V) = \frac{h}{4\pi} \Rightarrow m = 0.99 \text{ Kg} \approx 1 \text{ Kg}$$

Sol: 3d sub-shell can have maximum 10 electrons with half of the electrons having
$$S = +\frac{1}{2}$$
 and other half having $S = -\frac{1}{2}$

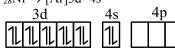
Sol:
$$E_{absorbed} = E_{emitted}$$

$$\therefore \frac{hc}{300} = \frac{hc}{496} + \frac{hc}{\lambda}.$$

$$\lambda = 759 \text{ nm}.$$

Sol:
$$E_2 - E_1 = 1312 - 1312/4 = 984 \text{ kJ/mol}$$

Sol: Visible lines
$$\Rightarrow$$
 Balmer series \Rightarrow 3 lines. (5 \rightarrow 2, 4 \rightarrow 2, 3 \rightarrow 2).


Sol:
$${}_{26}\text{Fe} = 1\text{s}^2, 2\text{s}^2, 2\text{p}^6, 3\text{s}^2, 3\text{p}^6, 3\text{d}^6, 4\text{s}^2, \\ \text{Fe}^{++} = 1\text{s}^2, 2\text{s}^2, 2\text{p}^6, 3\text{s}^2, 3\text{p}^6, 3\text{d}^6 }$$

The number of d -electrons retained in $Fe^{2+} = 6$.

Sol:
$$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1}$$

$$\left(\frac{1}{1^2} - \frac{1}{\infty^2}\right) \qquad \therefore \qquad \lambda = 91 \times 10^{-9} \text{ m} = 91 \text{ m}.$$

Sol:
$${}_{28}\text{Ni} \rightarrow [\text{Ar}]3\text{d}^8 4\text{s}^2$$

Number of unpaired electrons (n) = 2

$$\mu = \sqrt{n(n+2)} = \sqrt{2(2+2)} = \sqrt{8}$$

$$\Delta v = \frac{h}{4\pi \times m \times \Delta v} = \frac{6.625 \times 10^{-34}}{4 \times 3.14 \times .01 \times 10^{-5}}$$
$$= 52.7 \times 10^{-29} \text{ m/sec}$$

Sol:
$$\phi = \frac{hc}{\lambda_0}$$
 :: 2.4 = $\frac{12400}{\lambda_0}$:: $\lambda_0 \approx 516.7$ nm

For PEE, $\lambda_0 \le \lambda_0$. So, 5 sources (A, B, C, D, E) will exhibit photoelectric effect.

Sol:
$$1s^2 2s^2 2p^6 3s^1$$

m = 0 is for $2 + 2 + 2 + 1 = 7$

Sol: No. of radial nodes =
$$n - \ell - 1$$

For 3s,
$$x = 3 - 0 - 1 = 2$$

For 2p, $y = 2 - 1 - 1 = 0$

Sol: Energy of one photon =
$$\frac{hc}{\lambda}$$

$$= \frac{6.625 \times 10^{-34} \times 3 \times 10^8}{4500 \times 10^{-10}} J$$
$$= 4.42 \times 10^{-19} J$$

Energy emitted by the bulb =
$$150 \times \frac{8}{100} J$$

$$n \times 4.42 \times 10^{-19} = 150 \times \frac{8}{100}$$

$$n = 27.2 \times 10^{18}$$

CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

Single Option Correct Type Questions (01 to 60)

1. (3)

Sol: Penetration of p-subshell electron is less than s-subshell electrons. In case of Mg, the first electron is to be removed from completely filled 3s² valence shell configuration as compared to partially filled 3p¹ of Al. These two factors collectively accounts for the higher ionisation energy of Mg than that of Al. Therefore, (3) option is correct.

2. (4)

Sol: There is more interelectronic repulsion in 2p-subshell of fluorine than chlorine (3p). So extra electron will be added easily in 3p-subshell of chlorine as compared to 2p-subshell of fluorine.

3. (3)

Sol: Both statement (1) and (2) are correct.

4. (1)

Sol: (I) Have same number of electrons – So isoelectronic species

(II) Has metallic as well as non-metallic properties semi metal

(III) Exist as monoatomic molecules & are held together by weak van der Waal's forces so radius is defined as van der Waal's radius

(IV) Energy required to remove an electron from valence shell of an isolated gaseous atom is called I.E.

5. (4)

Sol: For isoelectronic species, as Z increases, Z_{eff} increases (and vice versa).

6. (2)

Sol: Inert pair effect.

7. (2)

Sol: Across the period size decreases and down the group size increases. So, Cs⁺ has largest ionic radius.

8. (1)

Sol: Atomic radii of zero group elements are expressed as their van der Waal's radii.

 $r_{\text{van der Waal's}}\!>\!r_{\text{covalent}}$.

9. (2)

Sol: Completely filled electronic configurations and half-filled electronic configurations are expected to have higher ionization energies. ns² np⁵ will have higher first ionization energy than ns² np⁴ on account of smaller size of atom and higher nuclear charge.

10. (3)

Sol: (i) Down the group, size increases and therefore, ionization energy decreases.

Hence, the order is correct.

(ii) Cation is smaller but anion is bigger than its parent atom. As charge on cation increases the ionic radius decreases. Similarly, as charge on anion increases the ionic radius increases.

IE $\propto \frac{1}{\text{Atomic / ionic radius}}$ and IE1 <

IE2 < IE3. Hence the order is correct.

(iii) N has stable half-filled electronic configuration thus has higher ionization energy than O. Hence the order is correct.

(iv) The correct order is Mg > Al < Si. Mg (3s²) has higher ionization energy than Al (3s² 3p¹) because s-sub shell electrons have higher penetration power than that of p-subshell electrons. Further across the period size decreases and nuclear charge increases and therefore, ionization energy increases.

11. (3)

Sol: Electron affinity is the measure of the ease with which an atom receives the additional electron in its valence shell in gaseous phase.

Generally, down the group, the electron affinity decreases due to increase in atomic size.

12. (4)

Sol: In chlorine, the addition of additional electron to larger 3p-subshell experiences less electron-electron repulsion than smaller 2p-subshell of fluorine. Phosphorus has very low electron affinity because there is high electron repulsion when the incoming electron enters an orbital that is already half filled.

13. (3)

Sol: Electronegativity values are as given below N = 3.0; C = 2.5; Si = 1.8; P = 2.1

14. (3)

Sol: The addition of extra electron is difficult to the atom having stable electronic configuration So electron affinity will be less or zero. Similarly, the removal of electron is quite difficult for an atom having stable electronic configuration So ionization energy is higher.

15. (1)

Sol: The elements of s-block and p-block are collectively known as representative elements.

Al – p-block element and Mg – s-block element. Cr – d-block element and Zn – d-block element.

Ag – d-block element and At – p-block element. La – f-block element and Th – f-block element.

16. (4)

Sol: As last electron enters in d-orbital. So it belongs to d-block. For d-block element group number = 5 + 1 = 6.

17. (4)

Sol: The d-sub shells are not filled with electrons monotonically with increase in atomic number. There are some exceptions like Cr, Cu etc.

18. (2)

Sol: Fe, Co, Ni have nearly same atomic radii on account of cumulate effect of increased

nuclear charge and shielding effect across the period. (Electrons are filled in d-subshell which has poor shielding effect).

19. (4)

Sol: Isoelectronic species have same number of electrons but different nuclear charge.

Ionic radius $\propto \frac{1}{\text{Nuclear charge}}$

20. (2)

Sol: 'N' has higher first ionization energy than that of 'O' because of extra stable half-filled electronic configuration of nitrogen.

21. (3)

Sol: There is a large jump in ionization energy from second to third one. Alkaline earth metals have the electron configuration [noble gas] ns²; third electron is to be removed from the electron configuration [noble gas] which will require very high energy. These data are of beryllium.

22. (2)

Sol: O has exceptionally smaller value of electron affinity (-141 kJ mol⁻¹) due to smaller atomic size than sulphur (weaker electron-electron repulsion in 3p-subshell).

23. (4)

Sol: (1) As electronegativity increases the non-metallic character increases and tendency to form anion increases.

(2) It is based on their SRP values. (Oxidising power may be cumulative effect of hydration energies, electro- negativities, bond dissociation energies and electron gain enthalpies).

(3) C = -121; Si = -135; P = -72; $N \approx 0$ (all values are in kJ/mole). It depends on various factors like size of atom, nuclear charge, partially filled, half filled and completely filled electronic configurations.

24. (3)

Sol: Due to fully filled electronic configuration of $He(1s^2)$.

25. (1)

Sol: Due to lanthanide contraction ionic radii order : $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$

26. (3)

Sol: According to modified modern periodic law, the properties of elements are periodic functions of their atomic numbers.

27. (2)

Sol: Number of electrons in $N^{3-} = 7 + 3 = 10$. Number of electrons in $F^{-} = 9 + 1 = 10$ Number of electrons in $Na^{+} = 11 - 1 = 10$.

28. (3

Sol: O^{2-} and F^{-} have two shells while Li^{+} and B^{3+} have only one shell. Also, $O^{2-} > F^{-}$ (for isoelectronic species, as Z increases, size decreases).

29. (3)

Sol: The addition of second electron in an atom or ion is always endothermic because of repulsion between two negative charges.

30. (2)

Sol: Nitrogen has half-filled stable electronic configuration, ns²np³. So, ionization enthalpy of nitrogen is greater than oxygen. On moving down the group, metallic radius increases due to increase in number of shells.

31. (4)

Sol: Lanthanide contraction is due to poor shielding of one of 4f electron by another in the subshell.

32. (3)

Sol: The atomic radii of the second and third transition series are almost the same. This phenomenon is associated with the intervention of the 4f orbitals which must be filled before the 5d series of elements begin. The filling of 4f before 5d orbital results in a regular decrease in atomic radii called Lanthanide contraction which essentially compensates for the expected increase in atomic size with increasing atomic number. The net result of the lanthanide contraction is that the second and the third transition series exhibit similar radii (e.g., Zr 160 pm, Hf 159 pm).

33. (4)

Sol: Element: B S P F
I.E.(kJ mol⁻¹): 801 1000 1011 1681
In general as we move from left to right in a period, the ionization enthalpy increases with

increasing atomic number. The ionization enthalpy decreases as we move down a group. P $(1s^2, 2s^2, 3s^2 3p^3)$ has a stable half-filled electronic configuration than S $(1s^2, 2s^2, 2p^6, 3s^2, 3p^4)$. For this reason, ionization enthalpy of P is greater than S.

34. (1)

Sol: Down the group, ionic radii increases with increasing atomic number because of the increase in the number of shells. But across the period, the ionic radii decreases due to increase in effective nuclear charge as electrons are added in the same shell. Li⁺ and Mg²⁺ are diagonally related but Mg²⁺ having higher charge is smaller than Li⁺, so correct order is Na⁺ > Li⁺ > Mg²⁺ > Be²⁺.

Be²⁺ = 0.31 Å Mg²⁺ = 0.72 Å Li⁺ = 0.76 Å Na⁺ = 1.02 Å

35. (4)

Sol: For isoelectronic species, ionic radii

$$\propto \frac{1}{\text{nuclear ch arg e}}$$

So, correct order of ionic radii is $8O^{2-} > 9F^- > 11Na^+ > 12Mg^{2+} > 13Al^{3+}$.

36. (2)

Sol: As we move in a group from top to bottom, electron gain enthalpy becomes less negative because the size of the atom increases and the added electron would be at larger distance from the nucleus

Negative electron gain enthalpy of F is less than Cl. This is due to the fact that when an electron is added to F, the added electron goes to the smaller n=2 energy level and experiences significant repulsion from the other electrons present in this level. In Cl, the electron goes to the larger n=3 energy level and consequently occupies a larger region of space leading to much less electron-electron repulsion. So the correct order is Cl > F > Br > I.

37. (3)

Sol: Order of ionic radii $Ca^{2+} < K^+ < Cl^- < S^{2-}$ In isoelectronic species, as Z increases, size decreases.

38. (3)

 $\mbox{Sol:} \quad \mbox{Order of increasing:} \begin{array}{ll} \Delta H_{IE_1} & \mbox{Ba} < \mbox{Ca} < \mbox{Se} < \mbox{S} \\ < \mbox{Ar} \\ \end{array}$

Ba < Ca; Se < S: On moving top to bottom in a group, size increases. So ionisation enthalpy decreases.

Ar: Maximum value of ionisation enthalpy, since it is an inert gas.

39. (3)

Sol: These are isoelectronic species.

As negative charge increases, ionic radius increases

40. (3)

Sol: I.P1 = Sc > Na > K > Rb

41. (3)

Sol: Statement (3) is correct due to half-filled electronic configuration of group 15 elements.

42. (2)

Sol: 4Be⁻ - 1s² 2s² 2p¹ Addition of an electron to a completely filled stable electronic configuration, so least stable.

43. (3)

Sol: This is a characteristic feature of transition metals.

44. (1)

Sol: 52 (p-block), 56 (s-block), 57 (d-block), 60 (f-block)

45. (3)

Sol: The order of penetration effect of different orbitals depends upon the different energies of the various sub-shells for the same energy level, e.g., electrons in s-subshell will have lowest energy and thus will be closest to the nucleus and will have highest penetration power, while p-subshell electrons will penetrate the electron cloud to lesser extent and so on.

46. (4)

Sol: Boron is a metalloid

47. (2)

Sol: Atomic radius increases on moving top to bottom in a group due to increasing number of shells. However, it decreases on moving left to right in a period due to increasing Zeff and addition of electrons to the same shell.

For H; cation is smaller than parent atom while anion is bigger than parent atom. H^- and Li^+ are isoelectronic species. So, ionic size ∞

 $\frac{1}{\text{nuclear charge}}$. Hence the correct order is

 $H^+ < Li^+ < H^-$.

48. (1)

Sol: In carbon family with an increase in atomic number, there atomic size decreases.

49. (4)

Sol: As elements are ionized, the proton to electron ratio increases, so the attraction between valence shell electron and nucleus increases and as a result the size decreases. Therefore, the removal of electron from smaller cation requires higher energy. Hence the second ionisation enthalpy is greater than its first ionisation enthalpy.

50. (1)

Sol: The increasing order of 1^{st} ionisation energy is f < d < p < s because of the increasing order of the penetration of the electrons as f < d < p < s if all other factors are same.

51. (4)

Sol: I.E increases on moving left to right in a period.

52. (4)

Sol: (1) The elements having large negative values of electron gain enthalpy generally act as strong oxidising agents. E.g. Halogens.

(2) The elements having low values of ionisation enthalpies act as strong reducing agents.E.g. Alkali metals.

(3) The formation of $S^{2-}(g)$ from S(g) is an endothermic process. ($\Delta egH1 = small$ negative value, $\Delta egH2 = large$ positive value).

53. (3)

Sol: Additional electrons are repelled more effectively by 2p electrons in F atom than by 3p electrons in Cl atom.

54. (3)

Sol: Be has completely filled stable $2s^2$ orbital and thus Be has higher ionisation energy than B. 2s orbital has less energy than 2p orbital. (From $(n + \ell)$ rule)

55. (3)

Sol: Electronegativity decreases on moving down the group.

56. (2)

Sol: N^{3-} and Mg^{2+} are isoelectronic, so Mg^{2+} (Z = 12) is smaller than N^{3-} (Z = 7); as ionic size $\propto \frac{1}{\text{Nuclear charge}}$, Mg^{2+} and Li^{+} are

diagonally related. Hence Mg²⁺ is smaller than Li⁺ because of higher positive charge (i.e. +2).

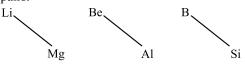
57. (4)

Sol: Manganese has stable [Ar]¹⁸ 3d⁵ 4s² configuration.

58. (3)

Sol: (1) This electronic configuration corresponds to fluorine (atomic number 9). Across the period size decreases with increase in nuclear charge. Hence it has higher first ionisation energy but less than next noble gas.

- (2) This electronic configuration correspond to silicon (3rd period).
- (3) This corresponds to first element of 3rd period i.e. Na. Na is bigger than Si. So it has lower ionisation energy then Si.
- (4) This electronic configuration corresponds to the inert gas i.e. Ne, which will have the highest ionisation energy.


Hence, the correct increasing order of first ionisation energies is (3) < (2) < (1) < (4).

59. (1)

Sol: $X_{(g)} + e^- \rightarrow X^-_{(g)} EA_1$. (Fluorine has higher electron affinity value)

60. (1)

Sol: Diagonal relationship is shown by following pairs.

Integer Type Questions (61 to 75)

61. (18)

Sol: Total 18 elements are present in 5th period (Rb to Xe)

62. (81)

Sol: At. wt. of Br = $\frac{35.5 + 127}{2} \approx 81$

63. (6)

Sol: $[Kr]^{36} 5s^1$

Last electron enters in 5s, so it belongs to 5th period.

For s-block group number = number of valence electron(s).

Sum = 5 + 1 = 6

64. (5)

Sol: Na, Zn, F, Mg, Li do not show +3 oxidation state

65. (115)

Sol: Z = 80, Hg and Z = 35, Br, both exist as liquid. Sum = 80 + 35

66. (25)

Sol: Mn shows +7 oxidation state.

67. (109)

Sol: Atomic number of unnilennium is 109.

68. (15)

Sol: $M \longrightarrow M^+ + e^-$ Ist I.E. = 15 eV $M^+ + e^- \longrightarrow M$ Electron gain enthalpy of M^+ Because reaction is reverse, so:

 $\Delta_{\rm eg}H = -15 \text{ eV} = -x \Rightarrow 15$

69. (23)

Sol: Atomic Numbers = 15 Valence Electron = 5

Valency = 3 Group Numbers = 15 Hence, Sum = 15 + 5 + 3 = 23

70. (526)

Sol: $Mg \rightarrow Mg^{+} + e^{-}$ $\Delta H_{1} = 178 \text{ Kcal mol}^{-1}$ $Mg^{+} \rightarrow Mg^{2+} + e^{-}$ $\Delta H_{2} = 348 \text{ Kcal mol}^{-1}$ So, ΔH of $Mg \longrightarrow Mg^{2+} + 2e^{-}$ is $\Delta H_{1} + \Delta H_{2}$ $= 178 + 348 = 526 \text{ Kcal mol}^{-1}$.

71. (3)

Sol: Since in d-orbital maximum 10 electrons can be filled.

(i), (iii) and (iv) are correct.

72. (1

Sol: The first member of the lanthanide series is Cerium (Z = 58).
Only (iv) option is wrong.

73. (3)

Sol: (i), (ii) and (iv) are correct.

(i) Across the period size decreases as electrons are added in the same shell and nuclear charge increases by one unit for addition of each successive element.

In contrary, the ionization energy increases as size of atom decreases and nuclear charge increases.

- (ii) Electron enthalpy values of halogens are exothermic (negative) and that of noble gases are endothermic (positive)
- (iii) IE₁ of phosphorus is greater than that of sulphur on account of stable half-filled electron configuration; P=1060 kJ mol⁻¹ and S=1005 kJ mol⁻¹
- (iv) Isoelectronic series of ion; all have the xenon electronic configuration.

Ionic radius =
$$\frac{1}{\text{nuclear charge}}$$

Atomic number: Te = 52; I = 53; Cs = 55; Ba = 56.

74. (3)

Sol: Density increases across the period as volume decreases and atomic weight increases, and generally increase down the group due to increase in atomic weight as compared to atomic volume.

Only (ii), (iii) and (iv) are correct.

75. (126)

Sol: In present setup of long form of periodic table, element with atomic number > 118 can not be accommodated.

CHEMICAL BONDING

Single Option Correct Type Questions (01 to 60)

1. (2)

The conditions required for the formation of an ionic bond are:

- (i) ionization enthalpy $[M(g) \rightarrow M^+(g) + e^-]$ of electropositive element must be low.
- (ii) negative value of electron gain enthalpy $[X (g) + e^- \rightarrow X^-(g)]$ of electronegative element should be high.
- 2. (2)

Cs has lowest IE₁ amongst the metals and F has higher electron affinity. So Cs and F form most ionic compound.

3. (2)

The ease of formation of ionic compounds i.e. stability to form ionic compounds increases as net ionization energy of electropositive element decreases. Hence, the correct order is $Na^+ > Mg^{2+} > Al^{3+}$.

4. (4)

Lattice energy ∝

$$\frac{1}{\text{(Interionic distance)}^2}$$
, LE $\propto \frac{1}{\text{Size of anion}}$

$$LE \propto \frac{1}{r_+ + r_-}$$

5. (3)

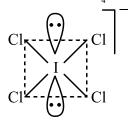
As charge on cations increases, their polarizing power increase and thus covalent character increase.

$$\overset{+}{\text{Li}} \, \text{Cl} < \overset{2+}{\text{Be}} \, \text{Cl}_2 < \overset{3+}{\text{BC}} \, \text{l}_3 < \overset{4+}{\text{C}} \, \text{Cl}_4$$

6. (1)

As F⁻ has lowest polarisability on account of smallest size among O²⁻, N³⁻ and C⁴⁻, it causes less polarisation and, therefore, has lowest covalent character. Hence, AlF₃ is the most ionic.

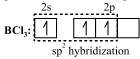
7. (4)

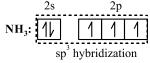

In SF₆, PCl₅ and IF₇, the valence shell has 12, 10 and 14 electrons. As all contain more than 8 electrons in their valence shell. They are example of super octet molecules.

8. (3

(1) and (2) have negative overlap while (3) has positive overlap. Thus (3) will show effective overlapping.

- 9. (2)
 - (1) σ bond is formed by axial over lapping.
 - (2) p-orbital have both axial and side-ways overlapping
- 10. (4)

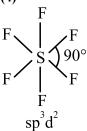

 BF_4^- , NH_4^+ and XeO_4 are tetrahedral with sp^3 hybridization. But ICl_4^- is square planar.


Square planar (sp³d²)

11. (3)

(a) Electronic configuration of boron in ground state is $1s^22s^22p^1$.

(b) Electronic configuration of nitrogen in ground state is 1s²2s²2p³.


(c) Electronic configuration of phosphorus in ground state is 1s²2s²2p⁶3s²3p³.

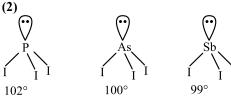
(d) Electronic configuration of boron in ground state is $1s^22s^2$.

$$\mathbf{BeF_2:} \begin{array}{c|c} 2s & 2p \\ \hline 1 & 1 \\ \hline \text{sp hybridization} \end{array}$$

12. (4)

13. (3)

- (1) both are sp³d
- (2) both are sp^3d
- (3) $[ClF_2O]^+$ is sp^3 but $[ClF_4O]^-$ is sp^3d^2

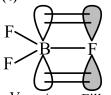


(4) both are sp^3d^2

14. (1)

Atomic size arguments can be used for these species. Larger outer atoms result in larger angles due to steric repulsion.

15. (


Phosphorus is the most electronegative of the central atoms. Consequently, it exerts the strongest pull shared electrons, on concentrating these electrons near P and increasing bonding pair-bonding repulsions-hence, the largest angle in PI₃. Sb, the least electronegative central - atoms, has the opposite effect: Shared electrons are attracted away from Sb, reducing repulsions between the Sb-I bonds. The consequence is that the effect of the lone pair is greatest in SbI3, which has the smallest angle.

Atomic size arguments can also be used for these species. Larger outer atoms result in larger angles; larger central atoms result in smallest angles.

16. (2

Diborane (B₂H₆) is an electron deficient compound.

17. (4)

Vacant Filled 2p-orbital

$$F = F \longrightarrow F = F \longrightarrow F = F \longrightarrow F$$

Decrease in B–F bond length is due to delocalized $p\pi$ – $p\pi$ bonding between filled porbital of F atom and vacant p-orbital of B atom.

18. (1)

Because of $p\pi$ -d π delocalisation of lone pair of electrons present on N atoms. Therefore, $(SiH_2)_2N$ is planar.

19. (1)

$$O_2^+$$
: B.O. = $\frac{10-5}{2}$ = 2.5; NO: B.O. = $\frac{10-5}{2}$ =

2.5; NO²⁺: B.O. =
$$\frac{9-4}{2}$$
 = 2.5; CN: B.O. =

- $\frac{9-4}{2}$ = 2.5.
- 20. (3

$$N_2$$
: $(\sigma 1s)^2$ $(\sigma^* 1s)^2$ $(\sigma 2s)^2$ $(\sigma^* 2s)^2$ $(\pi 2p_x^2 = \pi 2p_y^2)$ $(\sigma 2p_z)^2$

The bond order of N_2 is 1/2(10 - 4) = 3.

$$N_2^+$$
: $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\sigma 2p_z)^1$

The bond order of N_2^+ is 1/2(9-4) = 2.5.

$$O_2$$
: $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2$

 $(\pi 2p_x^2 = \pi 2p_y^2) (\pi *2p_x^1 = \pi *2p_y^1)$ The bond order of O_2 is 1/2 (10-6) = 2.

 $O_2^{\;-}\;:\; (\sigma 1s)^2\;\; (\sigma^* 1s)^2\;\; (\sigma 2s)^2\;\; (\sigma^* 2s)^2\;\; (\sigma 2p_z)^2$

$$(\pi 2p_x^2 = \pi 2p_y^2) (\pi *2p_x^2 = \pi *2p_y^1)$$

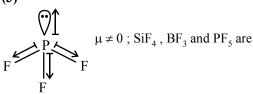
The bond order of O_2 is 1/2 (10 - 7) = 1.5.

NO⁺ derivative of O₂ and isoelectronic with O₂²⁺; so $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2$

$$(\pi 2p_x^2 = \pi 2p_y^2)$$

The bond order of NO⁺ is 1/2 (10 - 4) = 3.

NO derivative of O₂ and isoelectronic with O₂⁺; $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2)$, $(\pi^* 2p_x)^1$

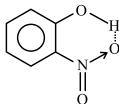

The bond order of NO is 1/2 (10 - 5) = 2.5.

bond order ∞ 1/bond length ∞ bond dissociation energy.

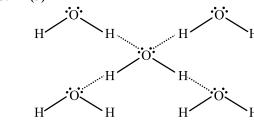
21. (3)

Bond order	Unpaired electron
O_2^{+} 2.5	1
NO 2.5	1
N_2^{+} 2.5	1

22. (3)

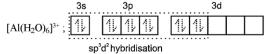

symmetrical molecules thus $\mu = 0$.

23. (1) H_2O , $\mu = 6.17 \times 10^{-30}$ Cm; NH_3 , $\mu = 4.90 \times 10^{-30}$


NF₃, $\mu = 0.80 \times 10^{-30}$ Cm; CH₄, $\mu = zero$.

24. (2)

It has intramolecular H-bonding



25. (3)

26. (1

Both are correct and Reason is the correct explanation of Assertion. In $[Al(H_2O)_6]^{3+}$, aluminium is in +3 oxidation state. So,

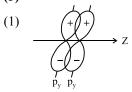
27. (2)

According to Fajan's rules polarisation of bond ∞ Charge on cation.

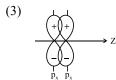
Size of cation

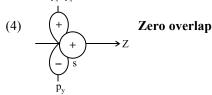
Polarisation of bond ∞ covalent character of bond.

28. (4)


(1)
$$\dot{N} = 0$$

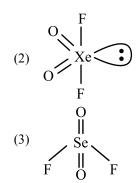
$$(2) O N O$$


$$(3) \quad O \qquad O$$


$$(4) \quad N = N$$

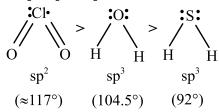
29. (3)

$$(2) \qquad \xrightarrow{p_z} p_z \xrightarrow{p_z} \bar{z}$$



30. (3)
$$(3) = \left(\begin{array}{c} (3) \\ (3) \\ (3) \\ (3) \end{array} \right) \left(\begin{array}{c} (3) \\ (3) \end{array} \right) \left(\begin{array}{c} (3) \\ (3) \\ (3) \end{array} \right) \left(\begin{array}{c} (3) \\ (3) \end{array} \right) \left($$

$$\begin{bmatrix}
\vdots \\
F
\end{bmatrix}$$


31.

32. (3)

- (1) According to VSEPR theory as electronegativity of central atom decreases, bond angle decreases. So bond angle of $H_2O > H_2S > H_2 Se > H_2 Te$
- (2) $C_2H_2 > C_2H_4 > CH_4 > NH_3$. In NH₃ there is bp-lp repulsion so bond angle decreases to 107° from 109.5°.

- (3) NH₃ < H₂O < OF₂ in this case bond angle of NH₃ is highest because lp lp repulsion is absent in. it.
- (4) $ClO_2 > H_2O > H_2S$

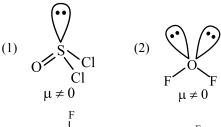
Note: It is supposed that in H₂S the hybrid orbitals do not participate in bonding but pure p-atomic orbitals participate in bonding.

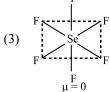
33. (3)

$$O_2: (\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2$$

 $(\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^1 = \pi^* 2p_y^1)$
 $O_2^-: (\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2$
 $(\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^2 = \pi^* 2p_y^1)$

34. (4)


M.O for
$$C_2 = \sigma 1s^2 < \sigma^* 1s^2 < \sigma 2s^2 < \sigma^* 2s^2 <$$

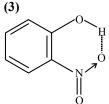

It is important to note that double bond in C_2 consists of both pi bonds because of the presence of four electrons in two pi molecular orbitals $C_2^{2-}\left[C^{\frac{\pi}{\frac{\pi}{\alpha}}}C^{2-}\right]^{2-}$.

35. (4)

Nitrogen molecule (N₂): $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2$ $(\sigma^* 2s)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\sigma 2p_z)^2$ The bond order of N₂ is 1/2(10-4)=3. It contains one sigma and two π bonds.

36. (3)

37. (2)


(% ionic character

$$= \frac{\text{Observed dipole moment}}{\text{Theoretical dipole moment}} \times 100)$$

Theoretical dipole moment of a 100% ionic character

=
$$e \times d = (1.6 \times 10^{-19} C) \times (1.41 \times 10^{-19} m) =$$

2.256 × 10⁻²⁹ Cm

38.

o-nitro phenol

o-nitrophenol has lower boiling point (i.e. more volatile) because it exists as discrete molecules than its para-derivative, where association of molecules takes place using intermolecular H-bonding.

39. (3

When ice is formed from liquid water, The tetrahedral structure around each oxygen atom with two regular bonds to hydrogen and two hydrogen bonds to other molecules requires a very open structure with large spaces between ice molecules.

$$D_{H_2O(s)} < D_{H_2O(l)} : V_{H_2O(s)} > V_{H_2O(l)}$$

40.

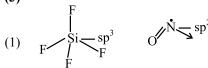
(3)

- (1) The sulphur is in sp² hybridization but due to lp-bp repulsion the bond angle decreases to 119.5°.
 - (2) The oxygen is in sp³ hybridization but due to lp-lp repulsion the bond angle decreases to 104.5°.
 - (3) It is believed that pure p atomic orbitals participate in bonding and due to lp-lp repulsion the bond angle decreases to 92.5°.
 - (4) The nitrogen is in sp³ hybridization but due to lp-bp repulsion the bond angle decreases to 107°.

SO₂ OH₂ SH₂ NH₃

Bond angle: 119.5° 104.5° 92.5° 107°

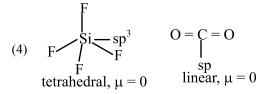
41. (2)


(1) CF₄ is tetrahedral whereas SF₄ is T-shaped.

(2)
$$\bigvee_{Xe} \int_{F}^{F}$$
, $O = C = O$ both linear

according to VSEPR.

- (3) BF_3 is trigonal planar and PCl_3 is tetrahedral.
- (4) PF₅ is trigonal bipyramidal and IF₅ is square pyramidal.


42. (3)

(2) N Sp^2 O = C = O

bent, $\mu \neq 0$ linear, $\mu = 0$ (3) $N = \operatorname{sp}^2$ $O = \operatorname{sp}^2$

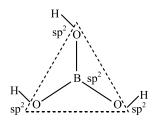
bent, $\mu \neq 0$ bent, $\mu \neq 0$

43. (2)

NO and NO⁺ are derivative of O₂.

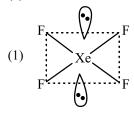
NO (isoelectronic with O_2^+): $(\sigma 1s)^2 (\sigma^* 1s)^2$ $(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^1 = \pi^* 2p_y)$

Bond order = 1/2(10 - 5) = 2.5.

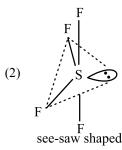

NO⁺(isoelectronic with O_2^{2+}): $(\sigma 1s)^2 (\sigma^* 1s)^2$ $(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^2 = \pi^* 2p_y^2)$

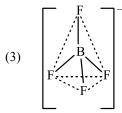
Bond order = 1/2(10 - 4) = 3.

Bond order $\propto 1/\text{bond length}$.

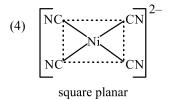

So, NO⁺ has shorter bond length.

44. (1)

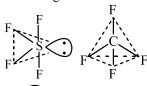



For planar BO $_3$ groups, the B–O bond length is usually close to 1.36 Å but for tetrahedral BO $_4$ groups the length increases to about 1.48 Å. This suggests that in the planar grouping π -bonding involving lone pairs of electrons from the oxygen atoms occurs; this π -bonding is necessarily lost in the tetrahedral group, in which a lone pair from the extra oxygen atom occupies the previously empty orbital on the boron atom.

45. (3)



square planar



regular tetrahedral

46. (4)

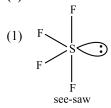
According to VSEPR theory

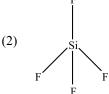
$$\ell p =$$

$$\ell p = 0$$
 $\ell p = 2$

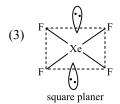
 sp^3 d-hybridisation sp^3d^2 -hybridisation

sp³-hybridisation


see-saw shape square planar shape

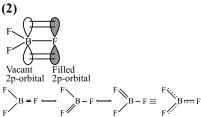

tetrahedral shape

47. (2)


 $\text{He}_2^+ \to \sigma \, (1\text{s})^2 \, \sigma^* \, (1\text{s})^1$, one unpaired electron. $\text{H}_2 \to (1\text{s})^2 \, \sigma^* \, (1\text{s})^0$, no unpaired electron. $\text{H}_2^+ \to \sigma \, (1\text{s})^2 \, \sigma^* \, (1\text{s})^0$, one unpaired electron. $\text{H}_2^- \to \sigma \, (1\text{s})^2 \, \sigma^* \, (1\text{s})^1$, one unpaired electron.

48. (1

regular tetrahedral



regular tetrahedral

49.

Decrease in B-F bond length which results in the higher bond dissociation energy of B-F in BF_3 is due to delocalized $p\pi-p\pi$ bonding between filled p-orbital of F atom and vacant p-orbital of B atom.

50. (2)

 NO_2^+ Number of electron pairs = 2

Number of bond pairs = 2

Number of lone pair = 0

So, the species is linear with sp hybridization.

$$O = \overset{+}{\underset{sp}{N}} = O$$

 NO_3 -Number of electron pairs = 3

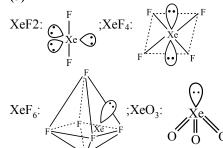
Number of bond pairs = 3

Number of lone pair = 0

So, the species is trigonal planar with sp² hybridization.

$$\overline{O} - \stackrel{+}{N} \stackrel{\overline{O}}{\underset{O}{\longrightarrow}} sp^2$$

 NH_4^+ Number of electron pairs = 4


Number of bond pairs = 4

Number of lone pair = 0

So, the species is tetrahedral with sp³ hybridization.

$$\begin{bmatrix} H \\ I \\ N \\ H \end{bmatrix}^{+} \rightarrow sp^{3}$$

Li₂:
$$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2$$

Bond order = 1
Li₂⁺: $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^1$
Bond order = 0.5
Li₂⁻: $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^1$
Bond order = 0.5

Stability order $Li_2 > Li_2^+ > Li_2^-$

53. (1)

(1) CO
$$\longrightarrow \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$,
$$\left[\pi 2p_x^2 = \pi 2p_y^2\right], \sigma 2p_z^2$$

All electrons are paired so diamagnetic

(2)
$$O_2 \longrightarrow \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$,
$$\left[\pi 2p_x^2 = \pi 2p_y^2\right]$$
, $\left[\pi^* 2p_x^1 = \pi^* 2p_y^1\right]$

Unpaired electron = 2 (Paramagnetic) (3) $B_2 \longrightarrow \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$,

$$\left[\pi 2p_x^1 = \pi 2p_y^1\right]$$
(Paramagnetic)

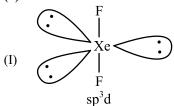
(4) NO $\longrightarrow \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\left[\pi 2p_x^2 = \pi 2p_y^2\right], \left[\pi^* 2p_x^1 = \pi^* 2p_y^0\right]$

(Paramagnetic)

54. (2)

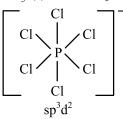
Ionic character ∞ charge on cation ∞ $\frac{1}{\text{Size of cation}}$

(I)
$$S = C = S$$
 (linear)

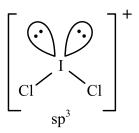

(II)
$$S = Sp^2 \text{ (bent)}$$

(III) $S = Sp^2 \text{ (trigonal planar)}$

(IV) $S = Sp^2 \text{ (trigonal planar)}$


(IV) $S = Sp^2 \text{ (trigonal pyramidal)}$

56. (4)

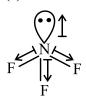


(II)
$$[N = N]^{+} = N]^{2-}$$

(III) PCl₅ (s) exists as [PCl₄]⁺ and [PCl₆]⁻;

$$(\text{IV}) \ \text{I}_2\text{Cl}_6(\ell) {\color{red} \Longleftrightarrow} \quad [\text{ICl}_2]^+ \quad + \quad [\text{ICl}_4]^- \quad ; \\$$

Self-ionization

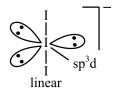

57. (1)

Steric no. of $IO_2F_2^- = 4 + 1 = 5$, sp^3d ; Steric no. of $F_2SeO = 3 + 1 = 4$, sp^3 ; Steric no. of $SO_2 = 2 + 1 = 3$, sp^2 ; Steric no. of $XeF_5^+ = 5 + 1 = 6$, sp^3d^2

58. (1)

Bonding molecular orbital results in increased electron density between nuclei due to constructive interference of combining electron waves.

59. (1)



Bond dipoles of N—F bonds are counter balanced to some extent by the dipole moment of lone pair of electron acting in opposite direction. This reduces both the dipole moment and its donor power.

60. (1)

Assertion and Reason both are correct statement and Reason is the correct explanation of Assertion, e.g., NO_2^+ and I_3^- have different hybridisation but on account of stability they have linear shape as given below.

$$O = N = O \text{ (linear)}$$
 and

Integer Type Questions (61 to 75)

61. (4)

 $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p_x^2 = \pi 2p_y^2)$ $(\sigma 2p_z)^2$; number of anti bonding electrons in N_2 is 4.

* represents antibonding molecular orbitals.

62. (3)

 \overrightarrow{OF} is derivative of O_2 and isoelectronic with O_2^- .

So, $(\sigma 1s)^2$ $(\sigma^*1s)^2$ $(\sigma 2s)^2$ $(\sigma^*2s)^2$ $(\sigma 2pz)^2$ $(\pi 2p_x^2 = \pi 2p_y^2)$ $(\pi^*2p_x^2 = \pi^*2p_y^1)$ The bond order of 'OF' is 1/2(10-7) = 1.5

63. (17)

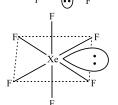
Dipole moment = $4.8 \times 10^{-10} \times 1.275 \times 10^{-8} = 4.8 \times 1.275 \times 10^{-18} = 4.8 \times 1.275 D$ 24. ionic character = 1.03×100 $\approx 17\%$

% ionic character =
$$\frac{1.03 \times 100}{1.275 \times 4.8} \approx 17\%$$

64. (6)

In N₂ molecule each nitrogen atom contributes three electrons so total number of electrons are 6.

65. (4)


Covalency of nitrogen in HNO₃ is 4.

66. (15)

 \therefore Bond order = 1.5

67. (6)

$$XeF_2 \bigcirc F ; XeF$$
 $XeF_2 \bigcirc F ; XeF$
 $F \bigcirc F ; XeF_6(g)$

68. (1) Number of electrons in HeH⁺ = 2 + 0 = 2; $(\sigma 1s)^2 (\sigma^* 1s)^0$. So, B.O. = $\frac{2-0}{2}$ = 1.

69. (5)

$$1D = 10^{-18} \text{ esu cm}$$

$$\delta = \frac{0.38 \times 10^{-18}}{1.61 \times 10^{-8} \times 4.802 \times 10^{-10}} = 0.049$$

70. (1)
According to VSEPR theory,
total number of electron pairs = 6.
total number of bond pairs = 5.
so total number of lone pair = 1.

There is one Xe—O double bond. The π -electrons of double bond create more repulsion than single covalent bond. To minimize the repulsions the lone pair and Xe—O double bond are trans to each other in octahedral geometry.

71. (2)

The species in which central atoms has higher valencies than their normal valencies are called as hypervalent species.

72. (18)

$$N \equiv C$$
 $C \equiv N$
 $N \equiv C$ $C \equiv N$
9 σ and 9 π bonds.

73. (2)
$$O = C = O \qquad (I) \quad Cl - Hg - Cl \qquad (II) \quad \bigcirc Sn - sp^{2}$$

$$sp \qquad sp \qquad Cl \quad Cl$$

$$(linear) \qquad (linear) \qquad (bent)$$

(III)
$$\bigcirc$$
 (IV) $H - C \equiv C - H$
 \bigcirc \bigcirc \bigcirc (spent) (linear)

(2)

75.

Bond order =
$$\frac{\text{Total number of bonds between atoms}}{\text{Total number of resonating structure}}$$

= $\frac{5}{4} = 1.25$; Formal charge on each 'O' atom
= $\frac{-3}{4} = -0.75$

THERMODYNAMICS

Single Option Correct Type Questions (01 to 60)

- 1. (2) $SO_2 \ (\gamma=1.33), N_2O \ (\gamma=1.4), He \ (\gamma=1.67)$ As γ increases, for compression, graph rises up.
- 2. (4) $\Delta G = (\Delta H) T(\Delta S)$ $\downarrow \qquad \qquad \downarrow$ $\neg Ve \qquad \neg Ve \qquad \neg$

Since both are -ve, the reaction would have a -ve ΔG below a temperature of

$$\frac{33000}{58}$$
 K (= 569K)

- (3)
 S is state function hence ΔS will be independent of type of process (reversible / irreversible) for A → B.
- 4. (2)I. Molar entropy of gas is much greater than

that of solid and liquid.

- II. Entropy change is positive if Δn_g is positive.
- III. Molar entropy of a crystalline solid will be zero at absolute zero.
- IV. In irreversible process both system and surroundings are not restored if path is reversed.
- V. Refractive index and molarity are intensive properties.

- Extensive properties: The properties of the system which depends upon the quantity of matter contained in it are called extensive properties e.g., mass, volume, energy, heat capacity etc. Intensive properties: The properties which are independent of the quantity of matter present in it are called intensive properties e.g., temperature, pressure, refractive index, viscosity, specific heat, density, surface tension etc.
- 6. (3)
 A thermos- flask is approximately an isolated system.
- 7. (2) PV = constant for isothermal process $PV^{\gamma} = constant for adiabatic process$ So more value of γ , more decrease in pressure as volume increases.
- 8. (3)
 The total heat content of a system is equivalent to the internal energy and work done, at constant pressure $\Delta H = \Delta E + W$
- 9. (2) From 1st law of thermodynamics $\Delta E = Q + W$ where Q = 0 for adiabatic process.
- 10. (3) $\Delta n_g \text{ is + ve}$ 11. (4)
 - $\Delta S_{\text{system}} = nC_{\text{v}} \ell n \left(\frac{T_2}{T_1}\right) + nR \ell n \left(\frac{V_2}{V_1}\right)$

$$\Delta G = \Delta H - T\Delta S$$

$$\downarrow \qquad \downarrow$$

$$-ve - ve \qquad +ve$$

Enthalpy of reaction (ΔH) is defined as heat exchanged during any chemical reaction

$$\Delta H = H_P - H_R$$

For exothermic reaction $H_P < H_R$

$$\therefore$$
 ΔH is -ve.

14. (2)

From Kirchoff's equation: $y - x = (C_{P, \text{vapour}} - C_{P, \text{ice}}) (T_2 - T_1) < 0$.

15. (2)

Combustion reaction of solid boron

$$B(s) + \frac{3}{4} \operatorname{O}_2(g) \longrightarrow \frac{1}{2} \operatorname{B}_2 \operatorname{O}_3$$

$$\Delta H^{\circ}_{\ r} = \Delta H^{\circ}_{\ c} = \frac{1}{2} \, \Delta H^{\circ}_{\ f} \left(B_2 O_3, \, s \right) - \Delta H^{\circ}_{\ f} \left(B, \, s \right)$$

$$-\;\frac{3}{4}\,\Delta H^{\circ}{}_{\mathrm{f}}\left(\mathrm{O}_{2},\,g\right)$$

 ΔH_f° of element in stable state of aggregation is assumed to be zero.

$$\Delta H^{\circ}_{C} = \frac{1}{2} \Delta H^{\circ}_{f} (B_{2}O_{3})$$

16. (2)

 ΔG for $3Fe(s) + 2O_2(g) \longrightarrow Fe_3O_4(s)$ can be obtained by taking

$$[(2) + 4 \times (1)] \times \frac{1}{3}$$

Hence, we get $\Delta G_f = [-19 + 4 \times (-177)] \times \frac{1}{3}$

$$= -242.3$$
 k cal for 1 mole Fe₃O₄

17. (4)

$$CS_2(\ell) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g)$$

$$\Delta H = -256 \text{ Kcal}$$

Let $\Delta H_{\rm f}$ (CO₂, g) = -4 x and $\Delta H_{\rm f}$ (SO₂, g) = -3x

$$\begin{split} \Delta H_{reaction} = \Delta H_f \ (CO_2, \, g) + 2 \ \Delta H_f \ (SO_2.g) - \Delta H_f \\ (CS_2, \, \ell) \end{split}$$

$$-265 = -4 \times -6 \times -26$$

$$x = +23.9$$

$$\therefore \Delta H_f(SO_2, g) = 3x = -71.7 \text{ Kcal / mol.}$$

18. (2

$$\Delta S = nC_V \ln \left(\frac{T_f}{T_i}\right) + nR \ln \left(\frac{V_f}{V_i}\right)$$

19. (3)

In an isolated system, there is no exchange of energy or matter between the system and surrounding. For a spontaneous process in an isolated system, the change in entropy is positive, i.e. $\Delta S > 0$.

Most of the spontaneous chemical reactions are exothermic. A number of endothermic reaction are spontaneous e.g melting of ice (an endothermic process) is a spontaneous reaction.

The two factors which are responsible for the spontaneity of process are

- (i) Tendency to acquire minimum energy
- (ii) Tendency to acquire maximum randomness.

$$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$$

For a spontaneous process $\Delta G^{o} < 0$

$$\Rightarrow \Delta H^{o} - T\Delta S^{o} < 0$$

$$\Rightarrow T\Delta S^{o} > \Delta H^{o}$$

$$\Rightarrow T > \frac{\Delta H^{0}}{\Lambda S^{0}} \Rightarrow T > \frac{179.1 \times 1000}{160.2}$$

$$\Rightarrow$$
 T > 1117.9 K \approx 1118 K.

21. (2)

$$\Delta S^{\circ}$$
 reaction = $50 - \frac{1}{2} (60) - \frac{3}{2} (40) = -40$

 JK^{-1}

For reaction to be at equilibrium

$$\Lambda G = 0$$

$$\Delta H - T\Delta S = 0 \Rightarrow T = \frac{\Delta H}{\Delta S} = \frac{30000}{40} = 750 \text{ K}$$

22. (3)
$$CH_3OH(\ell) + \frac{3}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell)$$

$$\Delta G_r = \Delta G_f(CO_2, g) + 2\Delta G_f(H_2O, (\ell)) - \Delta G_f$$

$$(CH_3OH, (\ell)) - \frac{3}{2}\Delta G_f(O_2, g)$$

$$= -394.4 + 2(-237.2) - (-166.2) - 0 = -$$

$$394.4 - 474.4 + 166.2 = -868.8 + 166.2$$

 $\Delta G_r = -702.6 \text{ kJ}$

% efficiency =
$$\frac{702.6}{726} \times 100 = 97\%$$
.

23. (2)
$$\Delta G = \Delta H - T\Delta S$$

For spontaneous reaction ΔG must be negative At equilibrium temperature $\Delta G = 0$ to maintain the negative value of ΔG T should be greater than T_e.

24. (1)

$$\Delta S = nR \ln \frac{V_2}{V_1}$$

$$= 2.303 \text{ nR } \log \frac{V_2}{V_1}$$

$$= 2.303 \times 2 \times 8.314 \times \log \frac{100}{V_2}$$

=
$$2.303 \times 2 \times 8.314 \times \log \frac{100}{10}$$

= $38.3 \text{ J mol}^{-1} \text{ K}^{-1}$

25. (2)
$$C_{2}H_{5}OH(\ell) + 3O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(\ell)$$

$$\Delta n_{g} = 2 - 3 = -1$$

$$\Delta U = \Delta H - \Delta n_{g} RT$$

$$= -1366.5 - (-1) \times \frac{8.314}{10^3} \times 300$$
$$= -1366.5 + 0.8314 \times 3 = -1364 \text{ K}.$$

$$= -1366.5 + 0.8314 \times 3 = -1364 \text{ KJ}$$

26. (3)
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$-RTlnK = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$lnK = -\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT}$$

27. (1)
The process is isothermal expansion
Hence,
$$q = -w$$
 $\Delta u = 0$

$$q = +208 J$$

w = -208 J (expansion work)

28. (4)
$$2\Delta G^{\circ}_{f(NO_{2})} - [2\Delta G^{\circ}_{f(NO)} + \Delta G^{\circ}_{f(O_{2})}]$$

$$= \Delta G^{\circ}_{r} = -RT \ln K_{p}$$

$$2\Delta G^{\circ}_{f (NO_2)} - [2 \times 86,600 + 0] = -RT \ln K_{p}$$

$$\Delta G^{\circ}_{f (NO_2)} = 0.5[2 \times 86,600 - R (298) \ln(1.6)]$$

 $\times 10^{12}$)]

$$C_{(graphite)} + O_2(g) \longrightarrow CO_2(g)$$

 $\Delta H_r = -393.5 \text{ kJ/mol} = \Delta H_f CO_2(g)$

$$H_2(g) + \frac{1}{2} \operatorname{O}_2(g) \longrightarrow H_2O(\ell)$$

$$\Delta H_r = -285.8 \text{ kJ/mol} = \Delta H_f H_2O(\ell)$$

$$CO_2(g) + 2H_2O(\ell) \longrightarrow CH_4(g) + 2O_2(g)$$

$$\Delta H_{\rm r} = \Delta H_{\rm f} \left(CH_4 \right) - \Delta H_{\rm f} \, CO_2(g) - 2\Delta H_{\rm f} \, H_2O \left(\ell \right)$$

= 890.3
$$\Rightarrow \Lambda H_f CH_4 + 393.5 +$$

⇒
$$\Delta H_f CH_4 + 393.5 + 2 \times 285.8 = 890.3$$

⇒ $\Delta H_f CH_4(g) = -74.8 \text{ kJ/mol}$

30. (3)
$$C_{\text{(graphite)}} + 2H_2(g) \longrightarrow CH_4(g)$$

31. (1)
$$\Delta G = \Delta H - T.\Delta S$$

If $\Delta H & \Delta S$ are both positive, then ΔG may be negative at high temperature hence reaction becomes spontaneous at high temperature.

32. (3)

$$2H_2O_2(l) \rightleftharpoons 2H_2O(l) + O_2(g)$$

 $W = -P_{ext} (\Delta V) = -(n_{O_2}) RT$

100 mol H₂O₂ on decomposition will give 50 mol O₂

$$\Rightarrow$$
 W = -(50)(8.3)(300)J = -124500 J

$$W = -124.5 \text{ kJ}$$

$$\Rightarrow$$
 Work done by $O_2(g) = 124.5$ kJ Ans.

33. (4)

$$\Delta H = \Delta H_{H_2O_{(\ell)}} + \Delta H_{fus} + \Delta H_{H_2O_{(s)}}$$

$$= n_{C_p\Delta T} + \Delta H_{fus} + n_{Cp\Delta T}$$

$$= 1 \times 75.3 \times 5 + 6000 + 1 \times 36.8 \times 5$$

$$= 6560.5 \text{ J mole}^{-1} \text{ or } 6.56 \text{ kJ mol}^{-1}$$

34. (2)

$$\begin{split} \Delta H &= n C_P \Delta T = O \\ \Delta S &= n R \; \ell n \left(\frac{V_f}{V_i} \right) \qquad (\because V_f \! > \! V_i) \end{split}$$

:. Enthalpy remains constant but entropy increases.

35. (3)

In a reversible process, the driving and the opposite forces are nearly equal, hence the system and the surroundings always remain in equilibrium with each other.

36. (4)

At equilibrium ΔG (Gibbs energy) = 0 but ΔG° (standard Gibbs energy) may or may not be zero.

As ΔG (Gibbs energy) is more negative reaction will be more spontaneous.

37. (1)

Statement 2 is IInd law of thermodynamics which concludes that total heat can never be converted into equivalent amount of work.

38. (4)

Heat (q) and work (w) are path functions.

39. (3)

$$\Delta_{\rm r}$$
C _p = 0,

$$\Delta H_{300} = \Delta H_{310}$$

40. (4

$$H_2C_2O_4(\ell) + \frac{1}{2}\,O_2(g) \to H_2O\;(\ell) + 2CO_2(g);$$

$$\Delta n_g = 3/2$$

$$\Delta U_c = -\frac{0.312 \times 8.75}{1} \times 90 = -245.7 \text{ kJ/mol}$$

$$\Delta H = \Delta U + \Delta n_g RT$$

$$= -245.7 + \frac{3}{2} \times \frac{8.314 \times 300}{1000}$$

= -241.947 kJ/mol.

41. (3)

For same amount of gas at constant temperature, lesser is the volume, lower will be the entropy.

42. (1)

$$\begin{array}{cccc} C_2H_4 + H_2 & \longrightarrow & C_2H_6 \\ 50 \text{ ml} & 50 \text{ ml} & 0 \\ X & X & 50 \text{ ml} \\ \Delta H = \Delta U + P \left(\Delta V \right) \\ -0.31 = \Delta U + 1.5 \times 1.01 \times 10^5 \left(-50 \times 10^{-6} \right) \times \\ 10^{-3} \end{array}$$

 $\Delta U = -0.3024 \text{ kJ}.$

43. (1)

$$\Delta E = q + w$$

$$W_{BC} = \frac{1}{2} (2V^{\circ} - V^{\circ}) (P^{\circ} - 3P^{\circ}) + (2V^{\circ} - V^{\circ})$$

$$(0 - P^{\circ}) = -2P^{\circ}V^{\circ}$$

$$\Delta E = nC_V \Delta T = 1 \times \frac{3}{2} \ R \left(\frac{P^{\circ} 2V^{\circ}}{R} - \frac{3P^{\circ} V^{\circ}}{R} \right)$$

$$=-\frac{3}{2} P^{\circ}V^{\circ}$$

$$q_{BC} = \Delta E - W = -\frac{3}{2} \, P^{\circ} V^{\circ} + 2 P^{\circ} V^{\circ} = \frac{1}{2} \, P^{\circ} V^{\circ}$$

44. (1)

$$H^+(aq) + OH^-(aq) \longrightarrow H_2O(\ell)$$

So,
$$\Delta H^{\circ} = -57.3 = -285.8 - \Delta H_{f}^{\circ} (H^{+}, aq) - \Delta H_{f}^{\circ} (OH^{-}, aq)$$

So,
$$\Delta H_f^{\circ}(OH^-, aq) = -228.5 \text{ kJ/mole}$$
 (as $\Delta H_f^{\circ}(H^+, aq) = 0$)

45. (1)

Since, expansion occurred at constant temperature,

$$\Delta S = nR \ln \frac{V_2}{V_1} = \frac{1}{32} \times 8.314 \ln \frac{3.0}{0.75} = 0.36$$

 IK^{-1}

Since, this is case of free expansion, $P_{ext} = 0$.

$$\Rightarrow$$
 -W = P_{ext} Δ V = 0, q = 0

Also, since,
$$\Delta T = 0 \Rightarrow \Delta H = \Delta E = 0$$
.

$$\Delta S_{\rm f} = \frac{\Delta H_{\rm f}}{T_{\rm f}}$$

$$\Delta S_f = \frac{2930 \text{ J mol}^{-1}}{300 \text{ K}} = 9.77 \text{ JK}^{-1} \text{ mol}^{-1}$$

47. (1)

$$CH_4 + \frac{1}{2}O_2 \longrightarrow CH_3OH(\ell)$$

∴ $\Delta H = -[(\Delta H \text{ of combustion of } CH_3OH) -$

 $(\Delta H \text{ of combustion of } CH_4)]$

$$= -[(-y) - (-x)]$$

$$= -[-y + x] = y - x$$

$$\therefore$$
 $x > y$

48. (1)

In closed insulated container a liquid is stirred with a paddle to increase the temperature, therefore No heat exchange with surrounding, so for it q = 0.

Hence, from first law of thermodynamics

$$\Delta E = q + W$$

if,
$$q = 0$$

 \therefore $\Delta E = W$ but not equal to zero.

$$\therefore \Lambda E = W$$

49. (4)

$$C = \frac{q}{n(T_2 - T_1)}$$

Given that.

$$C = 75 \text{ JK}^{-1} \text{ mol}^{-1}$$

$$q = 1.0 \text{ kJ} = 1000 \text{ J}$$

$$75 = \frac{1000}{5.55 \text{ x AT}} \left(n = \frac{100}{18} = 5.55 \right)$$

$$\Delta T = \frac{1000}{5.55 \times 75} = 2.4 \text{ K}$$

50. (4)

For the reaction,

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(\ell)$$

 Δn = number of gaseous moles of products

- number of gaseous moles of reactants

$$= 3 - 6 = -3$$

$$\therefore \Delta H = \Delta E + \Delta nRT$$

or,
$$\Delta H - \Delta E = \Delta nRT$$

$$\therefore \Delta H - \Delta E = -3RT$$

51. (4)

For the reaction

$$H_2(g) + Br_2(g) \longrightarrow 2HBr(g) \Delta H^{\circ} = ?$$

 $\Delta H^{\circ} = -[(2 \text{ x bond energy of HBr}) - (bond energy of H₂ + bond energy of Cl₂)]$

$$\Delta H^{\circ} = -[(2 \text{ x } (364) - (433 + 192)] \text{ kJ}$$

$$=-[728-(625)] kJ$$

52. (1)

For spontaneous process, ΔS must be positive. In reversible process

$$\Delta S_{\text{system}} + \Delta S_{\text{surrounding}} = 0$$

Hence, system is present in equilibrium.

(i.e, it is not spontaneous process)

While in irreversible process

$$\Delta S_{system} + \Delta S_{surrounding} > 0$$

Hence, in process ΔS is positive.

53. (2)

The spontaneity of a reaction is based upon the negative value of ΔG and ΔG is based upon T, ΔS and ΔH according to following equation (Gibb's-Helmholtz equation)

$$\Delta G = \Delta H - T\Delta S$$

If the magnitude of $\Delta H - T\Delta S$ is negative, then the reaction is spontaneous.

When $T\Delta S > \Delta H$ and ΔH and ΔS +ve, then ΔG is negative.

54. (1)

Heat of neutralization of strong acid and strong base is -57.33 kJ·MgO is weak base while HCl is strong acid, so the heat of neutralization of MgO and HCl is lower than -57.33 kJ because MgO requires some heat for ionisation, then net released amount of heat is decreased.

55. (1)

As we know that

$$\Delta H = \Delta E + p\Delta V$$

Or
$$\Delta H = \Delta E + \Delta nRT$$

Where, $\Delta n \rightarrow no$. of gaseous mole of product – no. of gaseous moles of reactant

If $\Delta n = 0$ (for reactions in which the number of moles of gaseous product are equal to number of moles of gaseous reactants), therefore $\Delta H = \Delta E$

So, for reaction (1)
$$\Delta n = 2 - 2 = 0$$

Hence, for reaction (1) = $\Delta H = \Delta E$

56. (1)

- (I) $\Delta V = 0$; W = 0
- (II) $\Delta T = 0$; $\Delta U = 0$
- (III) In vacuum, $P_{ext} = 0$
- (IV) At M.P. $\Delta U > 0$.

57. (3)

For adiabatic process, q = 0;

For Isoenthalpic process, $\Delta H = 0$

For Isothermal process, $\Delta T = 0$;

For Isoentropic process, $\Delta S = 0$

58. (1)

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g);$$

$$\Delta H_f = -\epsilon_1,$$
(i)

$$H_2O(g) \longrightarrow H_2O(l)$$
;

$$\Delta H_f = -\varepsilon_2$$
,(ii)

and (i) and (ii).

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$
.; $\Delta H = -(\epsilon_1 + \epsilon_2)$.

59. (1)

Reversible adiabatic process is also called on Isoentropic process.

60. (4)

For spontaneity. $\Delta G < 0$.

Integer Type Questions (61 to 75)

61. (213)

From 1st law of thermodynamics

$$\Delta U = q + W$$

$$Q = +800 J$$

$$W = -P(V_2 - V_1)$$

$$= -1 (20 - 10) = -10 \text{ dm}^3 \text{ atm} = -10 \times 101.3 \text{ J}$$

$$W = -1013 J$$

$$\Delta U = 800 \text{ J} + (-1013 \text{ J}) = -213 \text{ J}$$

62. (0)

When an ideal gas expands in vacuum the work done is zero as in vacuum there is no force of attraction or repulsion

63. (400)

$$\frac{1}{2}$$
A – A+ $\frac{1}{2}$ B – B \rightarrow AB, Δ H = –100 KJ/mole

$$\frac{1}{2}x + \frac{1}{2}(0.5x) - x = -100$$

$$\Rightarrow \frac{x}{2} + 0.25x - x = -100$$

$$\implies$$
 -0.25 x = -100

$$\Rightarrow x = \frac{100}{25} \times 100$$

$$\Rightarrow$$
 x = 400 kJ/mol

64. (350)

$$nCH_2 = CH_2 \longrightarrow (-CH_2 - CH_2 -)_n$$

$$\Delta H = -100 \text{ KJ/mole}$$

$$n[C = C] + n[C - H]4 - n[C - H]4 - n[C - C]$$

$$\times 2 = -100n$$

$$n[C = C] - 2n[C - C] = -100$$

$$\Rightarrow$$
 [C = C] - 2[C - C] = -100

$$\Rightarrow$$
 + 600 - 2[C - C] = -100

$$\Rightarrow$$
 -2 [C - C] = -700 KJ/mole

$$\Rightarrow$$
 (C - C) = -350

65. (370)

$$\Delta n_g = 0$$

$$\Rightarrow \Delta H^o = \Delta U^o$$

For 2 mole $\Delta U^{o} = -370 \text{ kJ}$.

$$\Delta U = \Delta H - \Delta nRT$$

= 41000 - 1 × 8.314 × 373 = 41000 - 3101.122
= 37898.878 J mol⁻¹ = 37.9 kJ mol⁻¹.

$$\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \longrightarrow NH_3(g);$$

$$\Delta H_f^{o} = -46.0 \text{ kJ mol}^{-1}$$

$$2H(g) \rightarrow H_2(g)$$
 ; $\Delta H_f{}^o = -\,436~kJ~mol^{-1}$

$$2N(g) \rightarrow N_2(g)$$
; $\Delta H_f^o = -712 \text{ kJ mol}^{-1}$

$$NH_3(g) \rightarrow \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) ; \Delta H = +46$$

$$\frac{3}{2}$$
 H₂ \longrightarrow 3 H; Δ H = +436 $\times \frac{3}{2}$

$$\frac{1}{2}$$
 N₂ \longrightarrow N; Δ H = + 712 $\times \frac{1}{2}$

$$NH_3(g) \rightarrow N(g) + 3H(g); \Delta H = +1056 \text{ kJ mol}^{-1}$$

Average bond enthalpy of N-H bond = $\frac{1056}{3}$

$$= +352 \text{ kJ mol}^{-1}$$

68. (44)

$$\Delta H = \Delta U + \Delta (PV)$$

$$\Rightarrow \quad \Delta H = 30 + (P_2V_2 - P_1V_1)$$

$$= 30 + (4 \times 5 - 2 \times 3) = 30 + 14 = 44 L atm.$$

69. (0)

$$\therefore$$
 H = E + PV and Δ H = Δ E + P Δ V

$$P\Delta V = nRT$$
.

$$\therefore \Delta H = \Delta E + nR\Delta T$$

For isothermal and reversible process

$$\Delta T = 0$$
.

$$\therefore \Delta H = \Delta E + 0.$$

$$\therefore \Delta E = 0.$$

∴ ΔH is also equal to zero.

70. (425)

$$\Delta_{\rm f}H_{\rm (HCl)} = -90 = \frac{1}{2} \times 430 + \frac{1}{2} \times 240 - \Delta H_{\rm BE(HCl)}$$

71. (53)

Enthalpy of neutralization is defined as amount of heat liberated when one mole of a strong acid is completely neutralized by one mole of a strong base. Its value is less in case of weak acid or weak base because small amount of heat is utilized in ionising the weak acid/base.

 ΔH for ionisation of CH₃COOH = Heat of neutralization for CH₃COOH - Heat of neutralization of strong acid

$$= -50.6 - (-55.9) \text{ kJ/mol} = +5.3 \text{ kJ/mol}$$

72. (110)

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
; $\Delta H = -393.5 \text{ kJ/mol}$.

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g);$$

$$\Delta H = -283.5 \text{ kJ/mol}.$$

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g);$$

$$\Delta H = -393.5 + 283.5 \text{ kJ/mol} = -110 \text{ kJ/mol}.$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T.\Delta S^{\circ} = -29.8 + 298 \times (0.1)$$

= -29.8 + 29.8

$$\therefore \nabla \mathbf{Q_o} = 0$$

Apply relation between ΔG^o & K_{eq}

$$\Delta G^{o} = -RT \ \ell n \ K_{eq}$$

$$K_{eq} = 1$$

74. (270)

$$\Delta H = \Delta U + \Delta n_g RT$$

$$=2.1+\frac{2\times2\times300}{1000}=3.3$$

$$\Delta G = \Delta H - T\Delta S$$

$$=3.3-300\times\frac{20}{1000}$$

$$= 3.3 - 6 = -2.7 \text{ K cal} = -270 \text{ cal}.$$

75. (121)

$$+H_2 \rightarrow \bigcirc$$

 $\Delta H = -[\Delta H \text{ of combustion of cyclohexane} - (\Delta H \text{ of combustion of cyclohexene} + \Delta H \text{ of combustion of } H_2)]$

$$= -[-3920 - (-3800 - 241)] \text{ kJ}$$

$$= -[-3920 + 4041] \text{ kJ} = -[121] \text{ kJ} = -121 \text{ kJ}$$

CHEMICAL EQUILIBRIUM

Single Option Correct Type Questions (01 to 60)

Sol:
$$\log \frac{K_P}{K_C} + \log RT = 0$$

$$\log \left(\frac{K_P}{K_C} \cdot RT \right) = 0$$

$$K_P = K_C (RT)^{-1}$$

$$K_P = K_C (RT)^{\Delta n}$$

 $\Delta n = -1$

This is possible one for option (2)

Sol:
$$K = \frac{r_f}{r_b}$$

$$\Rightarrow 1.5 = \frac{r_f}{7.5 \times 10^{-4}}$$

$$\Rightarrow$$
 r_f = 1.12 × 10⁻³.

3. **(4)**

Sol:
$$K_p = K_c (RT)^{\Delta n}, \Delta n^2 4 - 3 = 1$$

$$.05 = K_c R \times 1000$$

$$K_c = 5 \times 10^{-5} \times R^{-1}$$

$$K_c = \frac{5 \times 10^{-5}}{R}$$

4.

Sol: Concentration of reactant & product remains const. w.r.t time.

> At Equilibrium the rate of forward reaction (r_f) = rate of backward reaction.

5. **(4)**

Sol:
$$SO_2(g) + 1/2O_2(g) \rightleftharpoons SO_3(g)$$

$$K_p = 4 \times 10^{-3}$$

$$SO_3 \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$$

$$K_p^1 = \frac{1}{Kp}$$

$$K^{1}_{p} = \left(\frac{1}{4 \times 10^{-3}}\right)$$

$$2SO_3 \rightleftharpoons 2SO_2 + O_2(g)$$

$$K^{II}_{p} = (K^{I}_{p})^{2} = \left[\frac{1}{4 \times 10^{-3}}\right]^{2}$$

$$=\left[\frac{1000}{4}\right]^2 = 6.25 \times 10^4 \text{ atm.}$$

6. **(2)**

Sol:
$$C_2H_5OH(\ell) + CH_3COOH(\ell) \rightleftharpoons CH_3COOC_2H_5$$

$$(\ell)$$
 + H₂O (ℓ) .

a
$$0.33a$$
 a $-0.33a$ 0.33a 0.33a

$$K_C = \frac{(0.33a) \times (0.33a)}{(0.67a) \times (0.67a)} = K_C = 1/4.$$

7. **(2)**

Sol:
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$t = 0$$
 1.5 1.5 0
 $t = t_{eq}$ 1.5 - x 1.5 - x 2x

We know,
$$1.5 - x = 1.25$$
, or $x = .25$

$$(.5)^2$$

$$K_c = \frac{(.5)^2}{(1.25)^2} = .16$$

Sol:
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$
, $K_P = 4.28 \times 10^{-5}$ atm⁻²

Reaction Quotient,
$$Q_P = \frac{P_{NH_3}^2}{P_{N_2}(PH_2)^3} = \frac{3^2}{1 \times (2)^3}$$

$$=\frac{9}{8} \qquad Q_P > K_P,$$

:. Reaction will go Backward.

9. (1)

Sol:
$$Q = \frac{[C]^3}{[A]^2[B]} = \frac{(3/3)^3}{(2/3)^2(1/3)} = 6.75$$

$$Q < K_C$$

The reaction will proceed in forward direction to attain equilibrium.

Sol:
$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

Initially, $t = 0$ a 0
 $a - a\alpha$ 2a α

$$K_P = \frac{4\alpha^2}{1 - \alpha^2}$$

$$P = 380 \text{ torr} = \frac{380}{760} = .5 \text{ atm}$$

$$\frac{\alpha^2}{1-\alpha^2}$$
 = .335, α^2 = .25, α = .5

11. (4)

Sol: Since inert gas addition has no effect at const. volume.

12. (1)

Sol: (I) Δn_g is +ve so as P is increased, backward shifting will take place.

- (II) No change as $\Delta n_g = 0$.
- (III) Forward shifting will take place.

Sol:
$$2\text{CO}_2 \rightleftharpoons 2\text{CO} + \text{O}_2$$

 $t = 0$ 2 0 0
 $t = t_{\text{eq.}}$ $2 - 2 \times \frac{40}{100}$ $2 \times \frac{40}{100} \frac{40}{100}$

Total moles at equilibrium

$$= n_{\text{CO}_2} + n_{\text{O}_2} + n_{\text{CO}}$$
$$= 2 - 2 \times \frac{40}{100} + 2 \times \frac{40}{100} + \frac{40}{100} = 2.4$$

14. (1)

Sol:
$$2P(g) + Q(g) \rightleftharpoons 3R(g) + S(g)$$

 $t = 0$ 2 2 0 $x/2$
 $t = teq 2 - x 2 - x/2$ $3/2 \times x/2$
From above, at equilibrium $2 - x < 2 - x/2$
 $\therefore [P] < [Q]$ at equilibrium

15. (4)

Sol: Equilibrium constant (K) depends on the stoichiometry of the reaction.

Sol:
$$PCl_3(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

 $t=0 \quad 1 \quad 0 \quad 0$
 $t=t_{eq} \quad 1-x \quad x \quad x$
 $Total \quad moles = 1+x$

$$Given \frac{1-x}{1+x} = 0.4$$

$$x = \frac{3}{7}$$

$$x_{PCl_3} = \frac{3}{\frac{7}{1 + \frac{3}{7}}} = 0.3.$$

Sol:
$$SO_2 + \frac{1}{2}O \rightleftharpoons SO_3$$

5 moles 5 moles 0

$$5 - 5 \times \frac{60}{100} 5 - \frac{1}{2} \times 5 \times \frac{60}{100} 5 \times \frac{60}{100}$$

= 2 + 3.5 + 3 = 8.5 moles

Sol: Suppose NO₂ = xg. Then N₂O₄ = (100 - x) g
Moles of NO₂ =
$$\frac{x}{46}$$
, Moles of N₂O₄ = $\frac{100 - x}{92}$

Mole fraction of NO₂

$$= \frac{x/46}{x/46 + (100-x)/92} = \frac{x}{46} \times \frac{92}{100+x}$$
$$= \frac{2x}{100+x}$$

Mole fraction of N₂O₄

$$=1-\frac{2x}{100-x}=\frac{100-x}{100+x}$$

Molar mass of mixture = $\frac{2x}{100 + x} \times 46 + \frac{2x}{100 + x}$

$$\frac{100 - x}{100 + x} \times 92 = \frac{9200}{100 + x}$$

$$\therefore \frac{9200}{100 + x} = 2 \times 38.3 = 76.6$$

or
$$76.6x = 9200 - 7660 = 1540$$

or
$$x = 20.10 g$$

$$\therefore$$
 Moles of NO₂ = $\frac{20.10}{46}$ = 0.437

19. (2)

Sol: At equilibrium
$$\Delta G = 0$$

Given
$$\Lambda G^0 = 0$$

Gibbs equation $\Delta G = \Delta G^{\circ} - RT \ln K$

$$0 = 0 - RT \ln K$$

$$\Rightarrow K = e^0 = 1$$

20. (3)

Sol:
$$\ln \frac{K_2}{K_1} = \frac{\Delta H}{2.303 \,\text{R}} \left[\frac{1}{11} + \frac{1}{12} \right]$$

21. (2)

Sol:
$$2A(s) + 3B(g) \rightleftharpoons 3C(g) + D(g) + O_2$$

If pressure on system is reduced to half its original value then equilibrium will shift in forward direction to increase no. of moles of gas to compensate reduction of pressure.

:. Amounts of C & D will increase

22. (3)

Sol: If total pressure is decrease equilibrium will shift in the direction in which no. of moles of gas will increase.

$$N_2O_2 \rightleftharpoons 2NO_2$$

23. (2

Sol: If P^{\uparrow} , then V^{\downarrow} , then equilibrium will shift in a direction so as to increase volume i.e. forward direction more H_2O (ℓ) will form.

24. (4)

Sol: Rate of catalytic reaction is fast & yield is also appreciable for this exothermic reaction at this temperature.

25. (4)

Sol:
$$aA + bB \rightleftharpoons cC + dD$$

At high temp. & low pressure equilibrium is shifting in backward direction. It means (a + b) > (c + d).

26. (1)

Sol:
$$K_1 = \frac{(SO_3)}{(SO_2)(O_2)^{1/2}}$$

$$K_2 = \frac{(SO_2)^4 (O_2)^2}{(SO_3)^4} = \frac{1}{(K_1)^4}$$

$$\Rightarrow$$
 $K_2 = \frac{1}{(K_1)^4}$

27. (2)

Sol:
$$K_{C_3} = \frac{1}{K_{C_1} \times K_{C_2}^2}$$

28. (3)

Sol:
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

 $t = 0$ 2 4 0
 $t = t_{eq}$ 2-x 4-3x 2x
 $2x = 2$ mole of NH₃
 $x = 1$

So,
$$n_{N_2} = 2 - x = 2 - 1 = 1$$

 $n_{H_2} = 4 - 3x = 4 - 3 \times 1 = 1$
 $n_{NH_2} = 2x = 2$

Sol:
$$A \rightleftharpoons B + C$$

$$\begin{array}{ccc} 1 & 0 & 0 \\ 1-\alpha & \alpha & \alpha = (1+\alpha) \end{array}$$

$$Kp_1 = \frac{\alpha^2}{1-\alpha^2} \cdot p_1$$

$$1-\alpha$$
 $2\alpha = (1+\alpha)$

$$K_{p_2} = \frac{4\alpha^2}{1 - \alpha^2}$$
. p_2

$$\frac{K_{p_1}}{K_{p_2}} = \frac{p_1}{4p_2}$$

So,
$$\frac{p_1}{p_2} = 4$$
. $\frac{Kp_1}{Kp_2} = 4 \times 9 = 36$: 1.

Sol:
$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

 $t=0$ 1 0 0

$$t=t_{eq.}$$
 $(1-\alpha)$ α $\left(\frac{\alpha}{2}\right)$

Total mole at eq. =
$$\left(1 + \frac{\alpha}{2}\right)$$

$$P_{SO_3} = \left(\frac{1-\alpha}{1+\frac{\alpha}{2}}\right) P_0 = \left[\frac{2(1-\alpha)}{2+\alpha}\right] \times P^{o}$$

$$P_{SO_2} = \left(\frac{\alpha}{1 + \frac{\alpha}{2}}\right) P_0 = \left(\frac{2\alpha}{2 + \alpha}\right) \times P^o$$

$$K_{P} = \frac{\frac{4\alpha^{2}(P^{o})^{2}}{(2+\alpha)^{2}} \times \left(\frac{\alpha}{2+\alpha}\right) \times P^{o}}{\frac{4(1-\alpha)^{2}}{\left[2+\alpha\right]^{2}} \times \left(P_{0}\right)^{2}}$$

$$K_{P} = \left[\frac{\alpha^{3} P^{o}}{(2+\alpha)(1-\alpha)^{2}} \right]$$

Sol:
$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

$$2 - \frac{40}{100} \times 2 = 0.8 = 0.8$$

$$2-0.8 = 1.2$$

So, [PCl₅]
$$\frac{1.2}{2}$$
 = 0.6

$$[PCl_3] = \frac{0.8}{2} = 0.4$$

$$[Cl_2] = \frac{0.8}{2} = 0.4$$

$$K_C = \frac{[PCl_3] [Cl_2]}{[PCl_5]} = \frac{0.4 \times 0.4}{0.6} = \frac{1.6}{0.6} = 0.267$$

Sol:
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

$$t = 0$$
 1 mole 2 mole 0
 $t = eq$ 1-x 2-3x 2x = 0.8
 $x = 0.4$

$$x = 0.4$$

Mole of $N_2 = 0.6$

Mole of
$$H_2 = 0.8$$

Sol: Low temperature and high pressure

Sol:
$$N_2 + 3H_2 \Longrightarrow 2NH_3$$

In this reaction, the volume of product is less than that of reactants. Hence, according to Le-Chatelier's principle, the reaction will proceed in forward direction on increasing the pressure.

35. (3)

Sol: On increasing pressure, volume decreases and density increases, ie, equilibrium will shift towards densar side

Sol: Addition of inert gas at constant volume has no effect on equilibrium concentrations.

PARAKRAM JEE MAIN BOOKLET

37. (2)

Sol: High press & high temp.

 $H_2O(s) \rightarrow ice \rightarrow has low density & high volume$

 $H_2O(\ell) \rightarrow$ has high density & low volume.

So, low volume \rightarrow high pressure.

As reaction is endothermic high temperature is required.

38. (4)

Sol: If in the reaction the ratio of number of moles of reactants to products in same i.e., 1:1, then change in volume will not alter the number of moles.

39. (4)

Sol:
$$K_p = K_c (RT)^{\Delta n}$$
; $\Delta n = 1 - \left(1 + \frac{1}{2}\right) = 1 - \frac{3}{2} = -\frac{1}{2}$
 $\therefore \frac{K_c}{K_n} = (RT)^{1/2}$

40. (3)

Sol:
$$C_{[N_2O_4]} = 4.8 \times 10^{-2} \text{ mol L}^{-1}, C_{[NO_2]} = 1.2 \times 10^{-2} \text{ mol L}^{-1}$$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]} = \frac{1.2 \times 10^{-2} \times 1.2 \times 10^{-3}}{4.8 \times 10^{-2}} = 0.3 \times 10^{-2} = 3 \times 10^{-3} \text{ mol } L^{-1}$$

41. (4)

Sol:
$$K_p = K_c (RT)^{\Delta n}$$
 $\Delta n = 3 - 2 = 1$.
 $K_p = K_c (0.0821 \times 457)^1$. $K_p > K_c$.

42. (1)

Sol:
$$NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$$

Initial presence 0 0.5 0 At equilibrium 0 0.5+x x Total pressure = 0.5 + 2x = 0.84

 \therefore x = 0.17 atm

$$K_p = P_{NH_3} \times P_{H_2S} = 0.11 \text{ atm}^2.$$

43. (1)

Sol:
$$K_P = \frac{(P_{SO_3})^2}{(P_{SO_2})^2(P_{O_2})}$$
; Since $P_{SO_3} = P_{SO_2}$

$$\Rightarrow P_{O_2} = \frac{1}{K_P} = \frac{1}{3.5} = 0.285 \text{ atm}$$

44. (1)

Sol:
$$N_2 + O_2 \rightleftharpoons 2NO$$

Here, $\Delta n = O$

So, Increase in pressure at equilibrium has no effect on the Reaction.

Both, Assertion Reason are true and Reason is a correct explanation of Assertion.

45. (2)

Sol:
$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

= 2494.2 + 8.314 × 300 ln 4
= positive

$$\Delta G = RT \ell n \frac{Q}{K}$$

Since, ΔG is positive so, Q > K, so reaction shifts in reverse direction.

46. (2)

Sol:

$$A + B \rightleftharpoons C + D$$

$$t = 0 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

$$t_{eq} \qquad 1-x \qquad 1-x \qquad 1+x \qquad 1+x$$

$$\Rightarrow \frac{(1+x)^2}{(1-x)^2} = 100 \Rightarrow \frac{1+x}{1-x} = 10$$

$$\Rightarrow 1+x = 10-10x \Rightarrow \qquad 11x = 9$$

$$\Rightarrow x = \frac{9}{11} \qquad \Rightarrow \qquad [D] = 1+\frac{9}{11}$$

$$\Rightarrow [D] = 1.818$$

47. (4)

Sol: On increasing pressure, reaction shifts in the direction of increasing density. Water has higher density than ice.

So, reaction shifts in forward direction.

48. (1)

Sol: Addition/ removal of a solid component from an equilibrium system causer no shift in equilibrium (Both Q & K remain unaffected)

49. (4)

Sol:
$$K_P = K_C (RT)^{\Delta ng}$$

$$\Rightarrow K_C = \frac{K_P}{(RT)^{\Delta ng}} = \frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$$

Sol:
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

 $t = 0$ 1 mole 2 mole 0
 $t = eq$ 1-x 2-3x $2x = 0.8$
 $x = 0.4$
mole of $N_2 = 0.6$

mole of $H_2 = 0.8$

Sol: Reaction quotient
$$Q$$
, has the same form as the equilibrium constant K_{eq} . It is evaluated using any concentration. If Q is not equal to equilibrium, then a reaction will occur.

Here both Assertion and Reason are correct but Reason is not a correct explanation or Assertion.

given mole fraction of A_2 is = 0.36.

$$0.36 = \frac{3\alpha}{2 + 4\alpha}$$

$$\alpha = 0.46$$

Mole fraction of A₈ =
$$\frac{2-2\alpha}{2+4\alpha} = \frac{2-2\times0.46}{2+4\times0.46}$$

$$= 0.28$$

54. (2)

Sol: Let x is partial pressure of A and y is partial pressure of C when both equilibrium simultaneously established in a vessel

$$X(s) \xrightarrow{} A(g) + 2B(g)$$

 $X(2x + 2y)$
 $Y(s) \xrightarrow{} C(g) + 2B(g)$

$$Y(2y+2x)$$

$$\frac{K_{P_l}}{K_{P_2}} = \frac{x}{y}$$

$$\Rightarrow x = 2y$$

$$K_{P_l} = x(2x + 2y)^2$$

$$\Rightarrow$$
 x = 0.1 atm;

$$\therefore$$
 y = 0.05 atm

Total pressure of gases = $P_A + P_B + P_C$

$$= 3(x + y)$$

= 0.45 atm.

Sol: A catalyst does not influences the values of equilibrium constant but Catalysts influence the rate of both forward and backward reactions equally

Sol: NO +
$$\frac{1}{2}$$
O₂ \rightleftharpoons NO₂

$$\Delta G^{\circ} = 52 - 87 = -35 \text{ kJ}$$

$$\Rightarrow \Delta G^{\circ} = - \text{RTlnK}_{eq}$$

$$\Rightarrow \text{lnK}_{eq} = \frac{35000}{8314 \times 298}.$$

Sol:
$$2H_2O(g) + 2Cl_2(g) \rightleftharpoons 4HCl(g) + O_2(g)$$

 $K_p = 0.03$
 $T = 477^{\circ}c = 700 \text{ K}$
 $K_p = K_c(RT)^1$
 $K_c = \frac{K_p}{RT} = \left[\frac{0.03}{0.082 \times 700}\right]$

Sol:
$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

At equilibrium $\frac{P}{3}$ $P = \frac{P}{3} + P + P_{NH_3} = 2P$

$$P_{NH_3} = \frac{2 P}{3}$$

 $\Rightarrow K_c = 5.23 \times 10^{-4}$

$$K_p = \frac{\frac{2}{3} \times \frac{2}{3} \cdot \frac{P}{3}}{\frac{P}{3} \times P^3} = \frac{1}{P^2} \cdot \frac{4}{3}$$

$$\Rightarrow K_p = \frac{4}{3 \cdot P^2}$$

Sol:
$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

1 mole 2 mole 3 mole
$$K_C = \frac{(3)^2}{1 \times 2} = \left(\frac{9}{2}\right).$$

Let a mole of O₂ is added, Then,

$$K_C = \frac{(3+2x)^2}{(1-x)(2+a-x)} = \frac{9}{2} \, .$$

$$K_{C} = \frac{(4)^{2}}{0.5[(1.5) - a]} = \frac{9}{2} = \frac{16}{0.5(1.5 + a)} = \frac{9}{2}$$
$$= \frac{35}{0.5[(1.5 + a)]} = \frac{35}{0.5[(1.5 + a)]} = \frac{9}{2}$$

$$= \frac{35}{4.5} = [1.5 + a]$$

$$7.11 = 1.5 + a$$
.
 $a = \frac{101}{18} = 5.61$

As pressure is increased at eq^m, the reaction Sol: will shift towards the formation of a denser product.

Integer Type Questions (61 to 75)

61. (16)

Since, K_p is temperature dependent only. Sol:

62. (6)

Sol:
$$\Delta G^{o} = - RT \ln K_{eq}$$

 $15000 = -\frac{25}{3} \times 300 \ln K_{eq}$
 $K_{eq} = e^{-6} = e^{-x}$
 $\ln K_{eq} = -\frac{15000}{2500} = -6,$
 $\Rightarrow x = 6$

Sol:
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

 $t = 0$ 4.5 4.5 0
 $t = t_{eq}$. 4.5 - x 4.5 - x 2x
put $x = 1.5$
4.5 - 1.5 4.5 - 1.5 2 × 1.5 = 3
 \downarrow \downarrow \downarrow
3 3 3 3
 $K_C = \frac{(3)^2}{3 \times 3} = 1$

Sol:
$$C(s) + CO_2(g) \rightleftharpoons 2CO(g)$$

 $P-P/2$ $P = \frac{3P}{2} = 12$
So, $K_P = \frac{P^2}{(P/2)} = 2P = 2 \times 8 = 16$ atm.

Sol:
$$P_{C_2} = 2.80 - (0.80 + 0.40) = 1.60 \text{ atm},$$

$$k_p = \frac{P_{C_2}^2}{P_{A_2} \times P_{B_2}^3} = \frac{(1.60)^2}{0 \cdot 80 \times (0 \cdot 40)^3} = 50$$

Sol:
$$\alpha \propto \frac{1}{\sqrt{P}}$$
 If v increase 16 time \Rightarrow P because P/16 $\Rightarrow \alpha$ becomes 4 times.

Sol:
$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

$$K_c = \frac{[NO]^2}{[N_2][O_2]} = 4 \times 10^{-4}$$

$$\begin{split} NO(g) &\rightleftharpoons \frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \\ K_c &= \frac{[N_2]^{1/2} [O_2]^{1/2}}{[NO]} \\ &= \frac{1}{\sqrt{K_c}} = \frac{1}{\sqrt{4 \times 10^{-4}}} = \frac{1}{2 \times 10^{-2}} = \frac{100}{2} = 50 \end{split}$$

Sol:
$$SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$$

 $[SO_3][O_3]^{1/2}$

$$\frac{[SO_2][O_2]^{1/2}}{[SO_3]} = K_C = 5 \times 10^{-2} \dots (i)$$

$$SO_3(g) + 1/25 O_2(g) \Longrightarrow SO_3(g)$$
(ii)

$$\frac{[SO_3]}{[SO_2][O_2]^{1/2}} = K'_C = \frac{1}{5 \times 10^{-2}}$$

For
$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$

$$\frac{[SO_3]^2}{[SO_2]^2[O_2]} = K_C^2 = \frac{1}{5 \times 5 \times 10^{-4}} = \frac{10000}{25} = 400$$

Sol:
$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

 $K = 2 \times 10^{-2}$
 $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$

$$K' = \frac{1}{2 \times 10^{-2}} = 50$$

Sol:
$$XY(s) \rightleftharpoons X(g) + Y(g)$$

At eq. P P

Total pressure = 2P = 10 bar $\Rightarrow P = 5$

Now,
$$K_P = (P_X)(P_Y) = P^2 = 25$$

Sol:
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -54.07 \times 1000 - 298 \times 10$$

= $-54070 - 2980 = -57050$
 $\Delta G^{\circ} = -2.303 \text{ RT } \log_{10} \text{K} - 57050$

$$= -2.303 \times 298 \times 8.314 \log_{10} K$$

$$= -5705 \log_{10} K \Rightarrow \log_{10} K = 10$$

Sol:
$$A + B \rightleftharpoons C + D$$

 $t = 0$ 4 4 0 0

t = teq 4-2 4-2 2 2

$$K_C = \frac{2 \times 2}{2 \times 2} = 1$$

Sol:
$$2NO \Longrightarrow N_2 + O_2 \qquad \alpha = 10\%$$

$$t = 0 \qquad 4 - 0.4 \qquad 0.2 \quad 0.2 \qquad \Delta n = 0,$$

$$\therefore K_P = K_C, K_C = \frac{(.2/V)^2}{(3.6/V)^2} = \frac{4}{36 \times 36}$$

$$= \frac{1}{(18)^2} = x^{-2} \Rightarrow x = 18$$

Sol:
$$CO_2(g) + C(s) \Longrightarrow 2CO(g)$$

0.5 atm 0.5-p 2p
Total pressure = 0.5 - P + 2P = 0.8 P = 0.3
 $K_p = \frac{P_{CO}^2}{P_{CO_2}} = \frac{(2P)^2}{(0.5 - P)} = \frac{(0.6)^2}{(0.5 - 0.3)}$

$$K_p = 1.8 = \frac{x}{20} \Rightarrow x = 36$$

Sol:
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

$$K_C = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$
 Concentration in gram

mole/litre, therefore

$$[SO_3] = \frac{48}{80 \times 1}$$

(Where 80 is molecular weight of SO₃)

$$[SO_2] = \frac{12.8}{64 \times 1}$$

(Where 64 is molecular weight of SO₂)

$$[O_2] = \frac{9.6}{32 \times 1}$$

(Where 32 is molecular weight of O₂)

Thus,
$$K_C = \frac{\left(\frac{48}{80}\right)^2}{\left(\frac{12.8}{64}\right)^2 \left(\frac{9.6}{32}\right)} = 3$$

IONIC EQUILIBRIUM

Single Option Correct Type Questions (01 to 60)

1. **(2)**

 $NaOH + H_2SO_4 \longrightarrow NaHSO_4 + H_2O$ initial m mole : reacted mole : 5

$$pH = 7 + \frac{1}{2} \left[2 + \log \frac{5}{200} \right]$$
$$= 7 + \frac{1}{2} \left[2 + \log 5 - \log 200 \right]$$

$$=7+\frac{1}{2}[2+0.7-0.3-2]=7.2$$

2.

There will be cationic hydrolysis of NH₄Cl, solution will be acidic.

3.

$$HA + NaOH \longrightarrow NaA + H_2O$$

Weak Strong Salt of weak acid acid base & strong base.

Upon 50 % neutralization the amount of weak acid left and that of salt formed will be same and the system will act as an acidic buffer.

$$HA + NaOH \longrightarrow NaA + H2O$$
Upon 50% a/2 a/2

Neutralization

$$pH = pK_a + log \frac{[Salt]}{[Acid]}$$

$$=4 + \log \frac{a/2}{a/2} = 4$$

4. (1)
Initial, pH = 12; pOH = 2; [OH⁻]
=
$$10^{-2}$$
 M
Final, pH = 11; pOH = 3; [OH⁻]
= 10^{-3} M
Moles of NaOH removed = 0.01 – 0.00

Moles of NaOH removed = 0.01 - 0.001= 0.009 mol

A is the weakest conjugate base. Hence, HA will be the strongest acid.

6. (1)
$$H_3X \rightleftharpoons H^+ + H_2X^-$$

NaD

$$\begin{array}{ccc}
C & 0 & 0 \\
C(1-\alpha_1) & C\alpha_1 & C\alpha_1
\end{array}$$

$$H_2X^- \Longrightarrow H^+ + HX^{2-}$$

$$\begin{array}{cccc} C\alpha_1 & 0 & 0 \\ C\alpha_1(1-\alpha_2) & C\alpha_2\alpha_1 & C\alpha_2\alpha_1 \end{array}$$

$$HX^{2-} \longrightarrow H^+ + X^{3-}$$

$$\begin{array}{cccc} C\alpha_{2}\alpha_{1} & 0 & 0 \\ C\alpha_{2}\alpha_{1}(1-\alpha_{3}) & C\alpha_{1}\alpha_{2}\alpha_{3} & C\alpha_{1}\alpha_{2}\alpha_{3} \\ [H^{+}] = (3\times10^{-3}) + \left(3\times10^{-3}\times\frac{1}{3}\right) + \ 3\times10^{-3}\times0 \end{array}$$

$$= 4 \times 10^{-3} M$$

pH = $3 - \log 4 \approx 2.4$

$$pOH = pK_b + log \frac{\left\lceil NH_4^+ \right\rceil}{\left\lceil Base \right\rceil}$$

$$5.74 = 4.74 + \log \frac{n_{NH_4^+}}{0.005}$$

$$1 = log \frac{n_{NH_4^+}}{0.005}$$

$$n_{NH_4^+} = 0.05 \text{ mole}$$

Moles of $(NH_4)_2SO_4$ added = 0.025 mole

8. (2)

:
$$pH = \frac{1}{2} pK_W + \frac{1}{2} pK_a - \frac{1}{2} pK_b = 7$$

And
$$\alpha = \sqrt{\frac{K_W}{K_a K_b}} = \sqrt{\frac{10^{-14}}{10^{-12}}} = 0.1 \text{ or } \% \quad \alpha$$

9. (1)

(i) Solubility of AB =
$$\sqrt{K_{SD}} = 2 \times 10^{-10} \,\text{M}$$

(ii) Solubility of A₂B =
$$\sqrt[3]{\frac{K_{sp}}{4}} = 2 \times 10^{-4} \text{ M}$$

(iii) Solubility of AB₃ =
$$\left[\frac{K_{sp}}{27}\right]^{1/4} = 10^{-8} \, \text{M}$$

10. (1)

pH of NaHCO₃ solution = 9

Now
$$H^+ + HCO_3^- \longrightarrow H_2CO_3$$

 \therefore No. of milli moles of HCl remaining = 1 – 0.1 = 0.9 m mol

$$\therefore pH = -\log (9 \times 10^{-3}) = -2 \log 3 + 3$$

$$\Delta pH = 9 - (3 - 2\log 3) = 6 + 2\log 3$$

11. (2)

N₂H₄ and NH₂OH are related to NH₃ and are formed by the replacement of H in NH₃ by a NH₂ group or by OH group respectively.

In each case the electronegative substituent makes the nitrogen lone pair less readily available for protonation and results in weaker Bronsted bases (and hence stronger acidity for conjugate acids) than NH₃.

12. (2)

 $CH_3COOH + HF \longrightarrow CH_3COOH_2^+ + F^-$. HF gives H⁺ to $CH_3COOH & forms F^-$ so it

HF gives H⁺ to CH₃COOH & forms F⁻, so, it is a conjugate base of HF.

13. (1)

NaCl is the strongest electrolyte.

14. (2)

The substance which can accept a proton is called Bronsted base and which can donate proton is called Bronsted acid.

$$T \uparrow, [H^+] \uparrow, pH \downarrow$$

$$\alpha = \sqrt{\frac{K_a}{C}}$$
 :: $K_a = C \alpha^2 = 1 \times (10^{-4})^2 = 10^{-8}$

17. (1)

In a weak electrolyte, the degree of dissociation, $\alpha = \sqrt{\frac{K}{C}}$, so it increases with

18. (2)

$$pH = 1$$

$$\Rightarrow [H^+] = 10^{-1}M$$

increasing dilution.

[H⁺] in resultant solution

$$= \frac{10^{-1} \times 10 - 40 \times 10^{-2}}{10 + 40} = \frac{6 \times 10^{-1}}{50}$$

$$= 1.2 \times 10^{-2} M$$

$$pH = -log(1.2 \times 10^{-2}) = 2 - log(1.2)$$

$$= 2 - 0.07 = 1.93$$

19. **(3)**

> As the solution is acidic, pH < 7. This is because [H⁺] from H₂O cannot be neglected in comparison to 10^{-8} M.

20. **(1)**

$$K_{a_1} = \frac{[HS^-](0.05 \times 2)}{(0.1)} = [HS^-]$$

21. (1)

> Anion (PO₄³⁻) of weak acid (H₃PO₄)will undergo anionic hydrolysis.

22. **(2)**

$$pH = 7 + \frac{1}{2} (pK_a - pK_b) = 7 + \frac{1}{2} [0]$$

$$pH = 7.$$

23.

$$h = \sqrt{\frac{K_{w}}{K_{a}.K_{b}}}$$

$$= \sqrt{\frac{10^{-14}}{(1.8 \times 10^{-5})^{2}}} = 5.55 \times 10^{-3}$$

24. **(2)**

> Higher is pH, lesser is acidic nature. NH₄Cl (aq) is acidic and NaCN (aq) is basic.

- \therefore NH₄Cl < NaCN (pH)
- 25. **(1)**

Acetic acid will dissociate less due to common ion effect of CH₃COO-

So, H⁺ concentration will decrease hence pH will increase.

(4) 26.

$$pOH = pK_b + log \frac{[Salt]}{[Base]}$$

$$5 = -\log(1.8 \times 10^{-5}) + \log\frac{\text{Salt}}{1}$$

- $5 4.74 = \log [Salt]$
- [Salt] = 1.8 M
- 27. **(3)**

CH₃COONH₄ is a salt of weak acid and weak base and can act as simple buffer

28. **(3)**

> 50 mL is half neutralization point, $pH = pK_a$. When 100 mL NaOH is added we obtain a weak acid-strong base salt.

$$pH = \frac{1}{2} [14 + pK_a + logC] = \frac{1}{2} [14 + 4.2 + log$$

$$\frac{0.02}{2}$$
] = $\frac{1}{2}$ [14 + 4.2 - 2] = 8.1

29.

$$H_2SO_4 + 2H_2O \longrightarrow 2H_3O^+ + SO_4^{2-}$$

$$NaOH \longrightarrow Na^+ + OH^-$$

1 mole of H₂SO₄ acid gives 2 moles of H₃O⁺ ions. So, 2 moles of OH- are required for complete neutralization.

30. **(1)**

> Solution become, acidic and methyl orange act, on acidic pH.

31. **(2)**

> Strong acid can be used to titrate both strong and weak base.

32. (3)

Given

$$pH = 8$$

$$\Rightarrow$$
 pOH = 6 i.e $[OH^-]$ = 10^{-6} M

$$Cd(OH)_2 \rightleftharpoons Cd^{+2} + 2OH^{-}$$

[s]
$$[10^{-6}]^2 = 2.5 \times 10^{-14}$$

$$[s] = 2.5 \times 10^{-2}$$

$$[s] = 0.025M$$

33. **(3)**

$$K_{sp}(MgC_2O_4) = 7 \times 10^{-7}$$

$$\Rightarrow Q_{sp}\left(MgC_{2}O_{4}\right) = \left(\frac{0.01}{2}\right) \times \left(\frac{0.02}{2}\right) = \frac{1}{2} \times$$

 10^{-4} (>K_{sp}). So precipitation occurs.

So, 0.01 mol of MgCl₂ will remain in the final solution.

$$\Rightarrow$$
 [Mg²⁺] = $\frac{0.01}{2}$ = 0.005 M.

$$\alpha = \frac{\text{number of moles dissociated}}{\text{total moles present}}$$

$$=\frac{10^{-7}}{1000/18}=1.8\times10^{-9}=1.8\times10^{-7}\%$$

(Total moles of H₂O in 1litre = $\frac{1000}{10}$)

Moles of OH⁻ =
$$1 \times \frac{4}{40} = 0.1 \text{ mol}$$
; Moles of

$$H^+ = \frac{4.9}{98} \times 2 = 0.1 \text{ mol}$$

Thus, both are neutralised by each other i.e. pH = 7.

36. (3)

For precipitation, $Q_{sp} > K_{sp}$

$$[Fe^{3+}][OH^{-}]^{3} \ge 8 \times 10^{-13}$$

$$[0.1][OH^{-}]^{3} \ge 8 \times 10^{-13}$$

$$\left[\text{OH}^{-} \right] \ge 0.2 \text{ mmol.}$$

37. **(4)**

Buffer action of given solution will vary when moles of HCl added to the solution equal to moles of CH3COONa.

CH3COONa + HCl → CH3COOH + NaCl

38.

pH = 7 at equivalence point

39.

Solution is acidic in nature but not a buffer solution.

40. **(3)**

We know that for acids at 25°C, pH must be less than 7.

41. **(1)**

When rain is accompanied by a thunderstorm,

$$N_2 + O_2 \longrightarrow NO \longrightarrow NO_2 \xrightarrow{H_2O} HNO_2 + HNO_3$$

$$MX_4 \text{ (solid)} \Longrightarrow M^{4+}_{(aq)} + 4X^{-}_{(aq)}$$

Solubility product $K = 3 \times (4s)^4 - 256 s^5$

Solubility product,
$$K_{sp} = s \times (4s)^4 = 256 \text{ s}^5$$

$$\therefore \quad s = \left(\frac{K_{sp}}{256}\right)^{1/5}$$

$$MX_2$$
 (s) \Longrightarrow M^{2+} (aq) + $2X^-$ (aq)

$$K_{Sp} = s \cdot (2s)^2 = 4s^3$$

$$\Rightarrow 4 \times 10^{-12} = 4s^3$$

$$\implies$$
 s³ = 1 × 10⁻¹²

$$\Rightarrow$$
 s = 1 × 10⁻⁴ M

$$\Rightarrow$$
 [M²⁺] = 1 × 10⁻⁴ M

44. **(4)**

Conjugate base of OH-

$$OH^- \rightleftharpoons O^{2-} + H^+$$

For acidic buffer,
$$pH = pK_a + log \frac{A^-}{[HA]}$$

when the acid is 50% ionised, $[A^{-}] = [HA]$ $pH = pK_a + log 1 or pH = pK_a$ given $pK_a = 4.5$

$$\therefore$$
 pH = 4.5

$$\therefore$$
 pOH = 14 - 4.5 = 9.5

46. **(2)**

$$pH = 7 + \frac{1}{2}pK_a - \frac{1}{2}pK_b = 7 + \frac{4.8}{2} - \frac{4.78}{2} =$$

7.01

47. **(1)**

$$Na_2CO_3 \longrightarrow 2Na^+ + CO_3^{2-}$$

$$1{\times}10^{-4}M \quad \ 2{\times}10^{-4}M \quad \ 1{\times}10^{-4}\,M$$

$$K_{sp}[BaCO_3] = [Ba^{+2}] [CO_3^{2-}]$$

$$5.1 \times 10^{-9} = [Ba^{+2}] \times 1 \times 10^{-4}$$

$$[Ba^{+2}] = 5.1 \times 10^{-5}M$$

48. **(1)**

In (ii) equation H₂PO₄⁻ gives one H⁺ ion to H2O therefore in the (ii) equation it act as an acid.

49. (3)

$$H_2CO_3 \longrightarrow H^+ + HCO_3^ K_1 = 4.2 \times 10^{-7}$$

 $HCO_3^- \longrightarrow H^+ + CO_3^{2-}$ $K_2 = 4.8 \times 10^{-11}$

$$K_1 \gg K_2$$

$$\therefore \quad [H^+] = \left[HCO_3^- \right]$$

$$K_2 = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$$

But,
$$[H^{+}] = [HCO_{3}^{-}]$$

$$[CO3^{2-}] = K_2 = 4.8 \times 10^{-11} M$$

50. (2)

For precipitation to start, $K_{Sp} = Q_{Sp}$

$$K_{Sp} = [Ag^+][Br^-]$$

But,
$$[Ag^+] = 0.05 \text{ M}$$

$$\therefore$$
 [0.05] [Br⁻] = 5.0 × 10⁻¹³

[Br⁻] =
$$\frac{5.0 \times 10^{-13}}{0.05}$$
 = 1 × 10⁻¹¹ M

moles of KBr required = $M \times V = 1 \times 10^{-11} \times 1$

$$= 1 \times 10^{-11} \text{ mol}$$

weight of KBr required =
$$1 \times 10^{-11} \times 120 = 1.2 \times 10^{-9}$$
 g

× 10⁻⁹

51. (1)

Salt of weak acid and weak base

$$pH = \frac{1}{2}(pk_w + pK_a - pk_b) = \frac{1}{2}$$
$$(14 + 3.2 - 3.4) = 6.9$$

Millimoles, 10 5 0

Finally, 5 0 5

Resulting solution will be buffer

٠.

$$pOH = pK_b + log_{10} \frac{[NH_4Cl]}{[NH_3]} = 4.75 + log_{10} \frac{5}{5} = 4.75$$

$$\therefore$$
 pH = 14 – 4.75 = 9.25

53. (1)

$$B + H^+ \longrightarrow BH^+$$

At the half equivalent point, $[B] = [BH^+]$

$$\Rightarrow$$
 pOH = pKb (from buffer formula)

54. (4) $[CH_3COOH] = 0.1 M$

∴ pH =
$$\frac{1}{2}$$
 (pK_a - logC) = $\frac{1}{2}$ (4.76 + 1) = 2.88.

55. (3

$$[Ag^+][Cl^-] = K_{sp} = constant$$

$$\Rightarrow$$
 xy = constant

So, shape of graph should be a rectangular hyperbola.

56. (3)

Due to complex formation, solubility of sparingly soluble salt increases because of solubility equilibrium shifting in forward direction.

57. (4)

$$[H^+] = 3.4 \times 10^{-4} = C\alpha$$

$$K_a = C\alpha^2 = (C\alpha)(\alpha)$$

$$\alpha = \frac{1.7 \times 10^{-5}}{3.4 \times 10^{-4}} = 5 \times 10^{-2}$$

$$\therefore C = \frac{3.4 \times 10^{-4}}{5 \times 10^{-2}} = 6.8 \times 10^{-3} \,\mathrm{M}$$

58. (2)

HCl is a strong acid & CH₃COOH is a weak acid. At infinite dilution, complete dissociation of weak acid takes place.

59. (1)

(I)
$$pH = pK_a + log_{10} \left[\frac{Salt}{Acid} \right] = 5 + log_{10}$$

$$\left[\frac{0.1}{0.01}\right] = 4$$

(II)
$$pOH = pK_b + log_{10} \left[\frac{0.1}{0.1} \right] = 6$$

$$pH = 14 - 6 = 8$$

(III)
$$pH = \frac{1}{2} [pK_W + pK_a - pK_b]$$

$$=\frac{1}{2}[14+5-7]=6$$

(IV) Neutral solution pH = 7

60. (2)
Theoretical

Integer Type Questions (61 to 75)

61. (900)

Initially degree of dissociation

$$\alpha = \sqrt{\frac{K_a}{C}}$$

Now, degree of dissociation,

$$\alpha_1 = 2\alpha = \sqrt{\frac{4K_a}{C}} \ = \ \sqrt{\frac{K_a}{C_1}}$$

So,
$$C_1 = \frac{C}{4}$$

 \Rightarrow Hence, we have,

$$300 \times 0.2 = V_f \times \frac{0.2}{4}$$
 so $V_f = 1200$ mL

Hence, water added = 1200 - 300 = 900 mL

62. (9

$$N_1V_1 = N_2V_2$$

$$10^{-3} \times 10 = N_2 \times 1000$$

$$\Rightarrow$$
 N₂ = 10⁻⁵ N

$$\therefore$$
 pH = 5

And
$$pOH = 14 - 5 = 9$$

63. (7)

As $V \rightarrow \infty$, solution will be neutral. So, pH = 7 at 25°C.

64. (3)

$$[H^+] = c \times \alpha = 0.1 \times \frac{30}{100} = 0.03 \text{ M}$$

65. (20)

$$AgCrO_4 \rightleftharpoons 2Ag^+ + CrO_4^{2-}$$

$$K_{sp} = (2s)^2 s = 4s^3$$

$$s = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}} = \left(\frac{32 \times 10^{-12}}{4}\right)^{\frac{1}{3}} = 2 \times 10^{-4} M.$$

66. (50) $H_2A \Longrightarrow H^+ + HA^-$;

$$K_1 = \frac{[H^+][HA^-]}{[H_2A]} = 1 \times 10^{-5}$$

 $HA^- \longrightarrow H^+ + A^{2-}$

$$K_2 = 5 \times 10^{-10} = \frac{[H^+] [A^{2-}]}{[HA^-]}$$

$$K = \frac{[H^+]^2 [A^{2-}]}{[H_2A]} = K_1 \times K_2 = 5 \times 10^{-15}$$

67. (10)

$$K_{\mbox{SP}} = 1.0 \times 10^{-11} = [\mbox{Mg}^{+2}] \ [\mbox{OH}^{-}]^2$$

$$1.0 \times 10^{-11} = (0.001) [OH^{-}]^{2}$$

$$[OH^{-}] = 10^{-4} M$$

$$pOH = 4$$

$$pH = 14 - 4 = 10$$

68. (5)

$$HQ \rightleftharpoons H^+ + Q^-$$

$$0.1 - x$$
 x x

$$pH = 3$$
, $[H^+] = 10^{-3}$, $x = 10^{-3}$

$$K_a = \frac{(x) \times (x)}{(0.1 - x)} = \frac{(10^{-3})^2}{0.1 - 10^{-3}} \simeq \frac{10^{-6}}{0.1} = 10^{-5}$$

$$pK_a = -log K_a = 5$$

69. (9)

$$pH = 1 \Rightarrow [H^+] = 10^{-1} = 0.1 M$$

$$pH = 2 \Rightarrow [H^+] = 10^{-2} = 0.01 \text{ M}$$

For dilution of HCl $M_1V_1 = M_2V_2$

$$0.1 \times 1 = 0.01 \times V_2$$

$$V_2 = 10 L$$

Volume of water added = 10 - 1 = 9 litre

70. (316)

Let volume of 1^{st} solution = V mL

 \therefore Volume of 2nd solution = (800–V) mL

Amount of acid in 1st solution + Amount of acid in 2nd solution = Amount of acid in final solution.

$$\therefore \frac{45\text{V}}{100} + \frac{20(800 - \text{V})}{100} = \frac{29.875(800)}{100}$$

$$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}} = \sqrt{\frac{3.14 \times 10^{-4}}{1.96 \times 10^{-5}}} = 4:1$$

72. (9

$$pOH = pK_b + log \frac{\left[NH_4^+\right]}{\left[Base\right]}$$

$$pOH = 4.74 + \log \frac{1}{0.5}$$

$$pOH = 4.74 + 0.3$$

$$pOH = 5.04$$

$$pH = 14 - 5.04 \approx 9$$

73. (2)

S₁: pH \uparrow , T \downarrow .

S₃: In the presence of strong base, the degree of dissociation of a weak base decreases than in water.

74. (10)

For acidic buffer

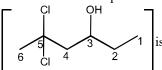
$$pH = pK_a + log \frac{[Salt]}{[Acid]}$$

$$6 = 5 + \log \frac{[Salt]}{[Acid]}$$
 or $\frac{[Salt]}{[Acid]} = \frac{10}{1}$

75. (2)

S₁: Final solution will contain NaCl (salt of SA and SB) and CH₃COONH₄ (salt of WA and WB with $K_a = K_b$). So, final solution will be neutral (pH = 7 at 25°C).

S2: Equivalence point pH will be greater than 7, but Methyl orange indicator has pH range = 3.1 - 4.4. So, Methyl orange cannot be used as indicator in given titration.


S3: NH₃ + H₂O
$$\rightleftharpoons$$
 NH₄⁺ + OH⁻ (proton donor) acid

ORGANIC CHEMISTRY- SOME BASIC PRINCIPLES & TECHNIQUES

Single Option Correct Type Questions (01 to 60)

1. (4)

Sol: 2, 2-Dichlorohexane-4-ol is incorrect name & correct name of compound

5,5-Dichlorohexan-3-ol.

2. (3)

Sol: Both have same molecular formula but different degree of amine so called functional isomers.

3. (2)

Sol: Trans–2–methylhex-3-ene does not has chiral carbon.

4. (2)

Sol: Both the isomers are not mirror image of each other so called configurational diastereomers.

5. (2)

6. (3)

Sol: Meso compound is optically inactive due to internal compensation of optical rotation.

7. (4)

8. (1)

Sol:
$$CH_3 - C - Ph$$
 $CH_2 - C - Ph$
 $CH_2D - C - Ph$

9. (1)

Sol: Optically active molecules have non-superimposable mirror image.

(1) is optically active while (2), (3), (4) are optically inactive.

10. (2)

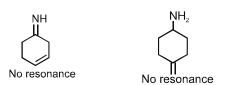
Sol:
$$CH_3 - C - CH_3 \longrightarrow CH_3 - C = CH_2 \xrightarrow{D_2O} CD_3 - C - CD_3$$
(Keto form) acetone Enol form

On treatment with D₂O all tautomerizable Hatoms are replaced by deuterium.

11. (2)

Sol: $\int_{-C-NH_2}^{\parallel}$, when attached to a ring, is a named as carboxamide.

(2) –C–NH₂ has higher priority than –C≡N


(3) –C≡N has prefix cyano

12. (2)

Sol: Because glycerine decomposes at its boiling point.

13. (1)

PARAKRAM JEE MAIN BOOKLET

14. (4)

In HCOO⁻, the two carbon oxygen bonds are of equal length because the anion HCOO⁻ has two equally stable resonating structures.

15. (3)

Sol: Acidic strength \propto stability of its conjugate base.

16. (4)

Sol: CH_3 —CH— CH_3 , , CH_3 —CH— CH_3 , , CH_3 —CH— CH_3 — CH_3 —C

17. (2)

Sol: Enol content depends on the stability of enol formed by the compound.

18. (3)

Sol: ERG groups decreases the stability of carbanion

19. (2)

Sol: Electron releasing group increases the stability of carbocation and electron withdrawing group decreases the stability of carbocation

20. (4)

Sol: The most basic is (CH₃)₃CO⁻ because of three electron donating –CH₃ groups (+ I effect) attached which tends to increase the electrons density at O atom.

21. (4)

Sol: CCl₃ is meta-directing due to reverse hyperconjugation (–H)

22. (3)

Sol: Solicities is resonance stabilised.

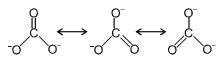
23. (2)

Sol: Volume of nitrogen collected at 300 K and 715 mm pressure is 50 mL

Actual pressure = 715 - 15 = 700 mm

Volume of nitrogen at STP = $\frac{273 \times 700 \times 50}{300 \times 760}$

=41.9 mL


22,400 mL of N_2 at STP weighs = 28 g

41.9 mL of nitrogen weighs = $\frac{28 \times 41.9}{22400}$ g

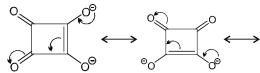
Percentage of nitrogen = $\frac{28 \times 41.9 \times 100}{22400 \times 0.3}$ = 17.46%

24. (3)

Sol:

Equivalent resonating structures thus all bonds have equal bond lengths

25. (1)


Sol: Pyridinium ion is aromatic in nature

because in pyridine the lone pair is not involved in conjugation.

26. (3)

Sol: More stable resonating structure contribute more towords resonance hybrid.

27. (2)

-ve charge on carbon

28. (2

Sol: There are unpaired electrons, others have no unpaired electrons.

29. (3)

Sol: Resonance energy α stability.

30. (3)

Sol: Carbocations, carbonions, free radicals and radical cations are sp², sp³, sp² and sp hybrid respectively.

31. (4)

Sol: Charge is never delocalized on the meta position at the benzene nucleus with respect to group.

32. (3)

Sol:
$$CH_2 \stackrel{\circ}{=} CH_2 \stackrel{\circ}{=} CH_2 \stackrel{\circ}{=} CH_2 - CH_2$$

$$CH = CH_2 \qquad CH = CH_2$$

$$CH = CH_2 \qquad CH = CH_2$$

$$CH = CH_2 \qquad CH - CH_2$$

$$CH = CH_2 \qquad CH - CH_2$$

$$CH = CH_2 \qquad CH - CH_2$$

33. (3

Sol: There is conjugation in A, B, D but not in C.

34. (1)

Sol: As per the definition

35. (2)

Sol:
$$H_2C = \stackrel{+}{N} = \stackrel{-}{N}$$
 $H_2\stackrel{+}{C} - N = \stackrel{-}{N}$ (II) (II) $H_2\stackrel{+}{C} - \stackrel{+}{N} = \stackrel{+}{N}$ (III) (IV) octet complete octet incomplete

octet complete octet incomplete
octet complete octet incomplete
-ve charge on nitrogen -ve charge on nitrogen-

36. (4)

Sol: + I group stabilises the carbocation and – I group stablises carbanion.

37. (2)

Sol: Due to presence of conjugated system.

ve charge on carbon

38. (1)

Sol: (1) CH₃ – CH = CH – CH₃ only hyper conjugation

(2) $H_{2}C = CH^{\Psi} + HC = CH_{2} \longleftrightarrow CH_{2} - CH = CH - CH_{2}$ (3) $CH_{2} = CH^{\Psi} - CH = CH^{\Psi} + CH = CH_{2} \longleftrightarrow CH_{2} - CH = CH - CH - CH_{2}$

$$(4) \bigcirc \longleftrightarrow \bigcirc$$

39. (1)

Sol: a is least stable since charge separation is done and +ve charge is towards -m group. d is most stable due to no charge separation and more linearly conjugation.

40. (2)

Sol: Stability \propto extent of resonance.

41. (1)

Sol: $-\overset{\Theta}{\mathsf{O}} > -\mathrm{NH}_2 > -\mathrm{OH} > -\mathrm{NHCOCH}_3$

42. (2)

Sol: Activating group \Rightarrow -NH₂ > -CH₃ Deactivating group \Rightarrow -Cl > -NO₂

43. (1)

Sol: Hyperconjugation $CH_3 - > CH_3CH_2 - > (CH_3)_2CH - > (CH_3)_3C -$

PARAKRAM JEE MAIN BOOKLET

44. (4)

Sol: In propene

$$H^{\oplus} H_2C^{\ominus} - CH = CH_2 \Longrightarrow CH_2 = CH - CH_2^{\ominus}$$

In ethane: no hyperconjugation

45. (2)

Sol: Heat of hydrogenation $\propto \frac{1}{\text{stability of alkene}}$

(III & IV have both resonance and hyperconjugation where as I and II have only hyperconjugation.)

46. (4)

Sol: Due to resonance

47. (2)

Sol: \int contain 10 π electrons. Azulene

is a dipolar ion and has both rings aromatic in its ionic form.

48. (3)

Sol: All are aromatic and obeys Huckel's rule.

49. (1)

Sol: As per the definitions

50. (3)

Sol: NO₂, CN, SO₃H having only –M (mesomeric) effect.

51. (2)

Sol: Heat of Hydrogenation $\propto \frac{1}{\text{stability of alkene}}$

52. (3)

Sol: C–C bond length \propto No. of hyperconjugative structure.

53. (2)

Sol: C_1 – C_2 is shorter because it is double bond in two of three resonance structure; C_2 – C_3 is a single bond in two of three resonance structures.

54. (4)

Sol: In (III) positive charge does not participate in resonance as nitrogen is sp³ hybridised

55. (1)

Sol: Compound with complete octet are more stable.

56. (2)

Sol: Fact.

57. (1)

Sol: More resonance structure, more stability.

58. (1)

Sol: More stable resonance structure contributes more in resonance hybrid.

59. (1)

Sol: CH₃ group has + I effect, as number of – CH₃ group increases the inductive effect increases.

60. (3)

Sol: All are aromatic compounds except

It is non aromatic so least resonance stabilised.

Integer Type Questions (61 to 75)

61. (50)

Sol: 0.17g NH₃ will contain $\left(\frac{14}{17} \times 0.17\right)$ g of nitrogen, i.e. 0.14g of nitrogen

Mass of nitrogen

% Nitrogen = $\frac{\text{Mass of nitrogen}}{\text{Mass of compound}} \times 100$

$$= \frac{0.14}{0.28} \times 100 = 50\%$$

62. (16)

Sol:

$$\bigcup_{I}^{Cl}$$

No. of stereo centre (n) = 4 Total no. of stereo isomer = $2^4 = 16$ 63. (32)

Sol:
$$CH=CH-C_2H_5$$

No. of stereo centre (n) = 5

Total no. of stereo isomer = $2^5 = 32$

64. (4)

Total 4-isomers

65. (3)

66. (4)

67. (1)

Sol: In all other cases positive charge is not in conjugation.

68. (22)

Sol: 3 + 5 + 9 + 5 = 22

69. (7)

Sol: Refer (+I) and (-I) groups.

70. (8)

Sol: 3π -bond and 1 lone pair electron.

71. (7)

Sol: 7 including the given structure in which every C will recieve a positive charge.

72. (6)

Sol:

have + M group.

73. (9)

Sol: no. of α -hydrogen = 9

74. (2)

Sol:

75. (32)

Sol:

No. of stereo centre (n) = 5

Total no. of stereo isomer = $2^5 = 32$

HYDROCARBONS

Single Option Correct Type Questions (01 to 60)

1. (4)

Sol: 2-Methylbut-2-ene & 3-Methylbut-1-ene both gives 2-Methylbutane after hydrogenation.

2. (4)

Sol:
$$CH_3$$
— CH — CH — CH_3 CH_3 CH_3 CH_3

3. (2)

Sol:

$$\begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CH}_3 - \text{C} = \text{CH} - \text{CH}_3 & \xrightarrow{\text{H}_2/\text{Ni}} & \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{CH}_3 \\ \mid \\ \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{CH}_3 & \text{has} & \text{four} & \text{chemically} \\ \text{different types of hydrogen atoms.} \end{array}$$

CH₃

$$CH_3 - CH - CH_2 - CH_3$$

4. (2)

Sol:
$$(x)$$
 $\xrightarrow{H_y/N_i}$

5. (2)

Sol:
$$CH_2 = C = CH - C - CH_3 \xrightarrow{O_3/Zn + H_2O}$$

$$2HCHO + CO_2 + CH_3$$
— CO — CHO

6. (1)

Sol:
$$O_3/Z_n \to 2HCHO + CHO$$
 $O_3/Z_n \to 2HCHO + CHO$
 $O_3/Z_n \to HCHO + CHO$
 CHO
 CHO

7. (3)

Sol:

 $\xrightarrow{O_3/Z_n}$ 2-methylpentanedial+4-oxopentanal+formaldehyde+acetone.

9. (4)

Sol:

10. (3) Sol: — — — —

Sol:
$$CH_3$$

 $CH_3 - C = CH - CH_2 - CH_3$
 $(2-Methyl-2-pentene)$
 (A)

$$CH_3 - C = O + CH_3 - CH_2 - C + CH_3 - CH_3 -$$

Sol:
$$\begin{array}{c}
CH_{3} \\
H_{3}C - C - CH_{3} \\
CH_{3}
\end{array}
\xrightarrow[\text{monohalogenation}]{Cl_{2} / hv} \text{ Single product.}$$
neopentane

13. (2)
Sol:
$$CH_3$$
 $CH_3 - C - CH_2 - CH_2 - CH - CHO$
 CH_3 $CH_3 - C - CH_2 - CH_3 - CH - CHO$

(5-keto-2-methyl hexanal)

Sol: (1), (2) and (3) give same product on hydrogenation.

Sol: Clemmensen reduction is not suitable for acidsensitive substrates.

Sol: Wolff- Kishner reduction

17. (3)

Sol: Wolff- Kishner reagent (contain base) does not affect acid- sensitive substrates but affect basesensitive substrates.

18. (3)

Sol: Soda- lime decarboxylation.

19. (2)

Sol: $R - COOH \xrightarrow{NaOH + CaO} R - H$

20. (3)

Sol: $2R - x + 2Na \xrightarrow{\text{dry}} R - R + 2NaX \text{ (Wurtz reaction)}$

21. (2)

Sol: Reactivity of x₂ for photochemical halogenation:

 $F_2 > Cl_2 > Br_2 > I_2.$

22. (3)

Sol: Reactivity of H during photochemical halogenation: $3^{\circ}H > 2^{\circ}H > 1^{\circ}H$.

23. (1)

Sol: Straight chain alkanes converted into branched alkanes in presence of anhydrous AlCl₃ and HCl gas.

24. (4)

Sol: Isomerisation of alkanes.

25. (2

Sol: Birch Reduction → Convert alkyne to trans. alkene.

26. (3)

Sol: Dehydrohalogenation of alkyl halides —— form stable alkene.

27. (2)

Sol: Dehalogenation of vicinal dihalide.

28. (3)

Sol: Addition of HX on alkene by Markovnikov's rule.

29. (2)

Sol: Oxymercuration- demercuration process gives alcohol corresponding to Markovnikov addition

30. (2)

Sol: Hydroboration- oxidation process gives alcohol corresponding to anti- Markovnikov addition.

31. (4)

Sol: Peroxide effect/ Khrasch effect.

32. (3)

Sol: Presence or absence of Peroxide has no effect on the orientation of addition of HCl.

33. (2)

Sol: Dehydrohalogenation of vicinal dihalide form alkyne.

34. (2)

PARAKRAM JEE MAIN BOOKLET

Sol: Dehydrohalogenation of vicinal dihalide

35. (3)

Sol: 1, 1, 1-trihaloalkane with silver powder form alkynes.

36. (4)

Sol: Halogens like bromine or chlorine add up to alkyne to give tetrahaloalkane.

37. (4)

Sol: Addition of HX to unsymmetrical alkyne take place by Markovnikov's rule and form geminal dihalide.

38. (2)

Sol:
$$H_3C - C \equiv CH \xrightarrow{B_2H_6} H_2O_2/OH^-$$

$$\downarrow H_3C = C \xrightarrow{H} CH_3 - C - C - H$$

$$\downarrow H_3C - C = CH \xrightarrow{H_3C} CH_3 - C - C - H$$

39. (1)

Sol: Alkyne react with water to form carbonyl compound by Markovnikov's rule using Hg²⁺ catalyst.

40. (4)

Sol: Product is (o, m, p) - xylene.

41. (2)

Sol: Zn dust convert phenol to benzene.

42. (1)

Sol: Benzoic acid convert into Benzene by reaction with soda lime (NaOH + CaO).

43. (1)

Sol: (Conc. $HNO_3 + Conc. H_2SO_4$) generate NO_2^{\oplus} electrophile.

44. (3)

Sol: Sulphonation of Benzene (electrophile: SO₃).

45. (3)

Sol: Lewisite is obtained when acetylene reacts with arsenic chloride.

$$CH = CH \xrightarrow{AsCl_3} CHCl = CHAsCl_2$$
(Lewisite)

46. (3)

Sol:
$$\xrightarrow{\text{CH}_3} \xrightarrow{\text{Br}_2/\text{FeBr}_3} \xrightarrow{\text{Electrophilic}} \xrightarrow{\text{CH}_3} \xrightarrow{\text{CH}_3} \text{and} \xrightarrow{\text{CH}_3} \xrightarrow{\text{CH}_3}$$

47. (3)

Sol: When an alkyl halide and an aryl halide react with sodium in the presence of dry ether to give aryl alkane (or alkyl benzene) the reaction is known as wurtz-fittig reaction

$$CI \longrightarrow CH_3 - CI \xrightarrow{Na / dry \text{ either}} C_6H_5CH_3$$

48. (4)

Sol:
$$CH_3-C \equiv C-CH_3 \xrightarrow{(i) \text{ Na, NH}_3(I)}$$

$$CH_3 \longrightarrow C = C \xrightarrow{H} \xrightarrow{(ii) CH_2l_2, Zn, \Delta} \longrightarrow H \xrightarrow{CH_3}$$

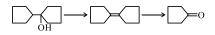
49. (3)

Sol: Quaternary ammonium salt undergoes hofmann elimination.

50. (4)

Sol:
$$CH_3$$
- CH_2 - CH_2 - $OH \xrightarrow{conc.H_2SO_4}$ $(160-180^{\circ}C)$

 $CH_3-CH = CH_2 \xrightarrow{Br_2} CH_3 - CH - CH_2$ Br Br


$$\frac{\text{alc.KOH}}{\text{NaNH}_2} \rightarrow \text{CH}_3 - \text{C} \equiv \text{C} - \text{H}$$

$$-2 \text{HBr}$$

(Z)

51. (1)

CH₃

Sol:
$$Cl$$
 $AlCl_3$ Cl Cl Cl Cl $Cone. HCl$ $Cone. HCl$

Sol:
$$BrCH_2$$
 CH_2Br Na Ether, heat

Sol: Alkenes generally undergo electrophilic addition reactions.

Sol: Other alkyl halide should not be 3° alkyl halide in corey-house synthesis, as it is a $S_{\rm N}2$ process.

Sol: After completion of reaction solution will be alkaline due to formation of NaOH.

57. (4)

Sol: Due to radical Intermediate.

58. (1)

Sol:

$$\begin{array}{c} CH_{3} \\ H \end{array} C = C \\ \begin{array}{c} H \\ CH_{3} \\ \end{array} \xrightarrow{Anti \ addition} \\ H \\ \begin{array}{c} CH_{3} \\ C \\ \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Br \\ \end{array} \xrightarrow{Br} \\ \begin{array}{c} CH_{3} \\ C \\ \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Br \\ \end{array} \xrightarrow{Br} \\ \begin{array}{c} CH_{3} \\ C \\ \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Br \\ \end{array} \xrightarrow{Br} \\ \begin{array}{c} CH_{3} \\ C \\ \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Br \\ \end{array} \xrightarrow{Br} \\ \begin{array}{c} CH_{3} \\ C \\ \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Br \\ \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Br \\ \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ Br \\ \end{array} \xrightarrow{H} \\ \begin{array}{c} H \\ H \\ \end{array} \xrightarrow{H} \\ \begin{array}$$

59. (3)

Sol: Conceptual

60. (2)

Sol:
$$CH_3 \subset CH_3 \subset CH$$

$$\begin{array}{c} CH_3 \\ CH_3 \\ HO \longrightarrow H \\ HO \longrightarrow H \\ CH_3 \end{array}$$

Integer Type Questions (61 to 75)

61. (5)

Sol: Number of mole of hydrogen needed is = number of double bonds = 5

62. (1)

Sol: 2, 2, 3, 3-Tetramethylbutane have only one type of chemically different hydrogen atom.

63. (3)

Sol: CH_3 has three chemically different types of hydrogen atom.

64. (3)

Sol: HC=C-CH₂-CH-CH-CH₂-CH₃, CH₃-C=C-CH-CH-CH₂-CH₃, CH₃-CH₂-CH₃ CH₃-CH₂-CH₃

CH₃-CH₂-CH₂-CH-CH-C=CH
CH₃-CH₂-CH₂-CH₃

65. (6)

Sol:

66. (4)

Sol: Only one alkene

PARAKRAM JEE MAIN BOOKLET

Three monochloro isomers are possible as it has three different types of 'H' atoms.

67. (6)

Sol:

Sol:
$$C_5H_8$$
 (Molecular Mass = 68)

Sol: CH₃CH=CHCH₃
$$\xrightarrow{O_3/Zn}$$
 2CH₃CHO.

Sol: Correy- House synthesis; $Z = Propane (C_3H_8)$

Sol: Polymerization of alkyne.

Sol:
$$CH_3 - CH_3 - CH$$

2 Enantiomers

73. (30)

Sol:

$$\begin{array}{c} \text{CH}_3\text{-CH-CH}_2\text{-CH}_3 \xrightarrow{\text{Cl}_2/\text{hv}} \text{CH}_2\text{-CH-CH}_2\text{-CH}_3 \\ \text{CH}_3 & \text{Cl} & \text{CH}_3 \end{array}$$

Product ratio \Rightarrow 6:5:6:3

Total yield \Rightarrow 6 + 5 + 6 + 3 = 20

\% yield =
$$\frac{6}{20} \times 100$$

74. (3)

Sol: (i), (ii) & (iv) are correct.

75. (2

Sol: H_2 will be liberated at cathode.

SOLUTIONS AND COLLIGATIVE PROPERTIES

Single Option Correct Type Questions (01 to 60)

Sol:
$$P = P_A^o X_A + P_B^o (1 - X_A)$$
 and

$$P_A^{o} X_A = Y_A P = Y_A [P_A^{o} X_A + P_B^{o} (1 - X_A)]$$

so,
$$\frac{1}{Y_A} = 1 + \frac{P_B^o}{P_A^o} (\frac{1}{X_A} - 1)$$

so,
$$x = 1 + \frac{P_B^{\circ}}{P_A^{\circ}} (y - 1)$$

Hence
$$\Rightarrow$$
 $(x-1) \frac{P_A^{\circ}}{P_B^{\circ}} + 1 = y$

so,
$$y = mx + C$$
 gives the result

Sol: Elevation in boiling point ∞ concentration of a solution. Thus, the order of concentration of solution is I < II < III.

Sol: A: Benzene B: Toluene
$$P = P_A + P_B$$

$$P = P_A^0 X_A + P_B^0 X_B$$

$$= 75 \times \frac{1}{2} + 22 \times \frac{1}{2} = 37.5 + 11 = 48.5$$

Mole fraction of benzene in vapour,
$$Y_A = \frac{P_A}{P}$$

$$=\frac{37.5}{48.5}=0.78$$

Similarly, mole fraction of toluene in vapour, $\Upsilon_B = 0.22\,$

:. The vapour will contain higher percentage of benzene

Sol:
$$(2) CHCl_3 + CH_3COCH_3$$

Sol:
$$X_A = \frac{1}{3}, X_B = \frac{2}{3}$$

$$P = P_A^0 X_A + P_B^0 X_B$$

$$= 150 \times \frac{1}{3} + 240 \times \frac{2}{3}$$
$$= 50 + 160 = 210 \text{ mm}$$

$$P_{exp.} < P_{calculated}$$

:. There is negative deviation from Raoult 's law

9. (4)

Sol:
$$A_x B_y \rightleftharpoons x A^{m^+} + y B^{n^+}$$
 Initial moles
$$n = 0 = 0$$
 At eq b.
$$n(1-\alpha) = nx\alpha = ny\alpha$$

$$i = \frac{Total \quad mol \quad at \quad equilirium}{lnitial \quad mol} =$$

$$\frac{n[(1-\alpha)+x\alpha+y\alpha]}{n}$$

$$i = (1 - \alpha) + x\alpha + y\alpha$$

It can also seen that all other expressions imply the same thing.

PARAKRAM JEE MAIN BOOKLET

10. (2)

Sol: For dissociation (i > 1)

11. (4)

Sol: AIPO₄ \longrightarrow Al³⁺ + PO₄³⁻ i = 1 + x = 2

 $\Delta T_b = molality \times k_b \times i$

$$\therefore \frac{\Delta T_b}{K_b} = 0.02.$$

12. (2)

Sol:
$$\Delta T_b = m \ k_b = \frac{w}{M} \times \frac{1000}{W} \times k_b$$

$$\Delta T_b = 47.98 - 46.3 = 1.68$$

$$1.68 = \frac{28}{M} \times \frac{1000}{315} \times 2.38$$

$$M = \frac{28 \times 1000 \times 2.38}{315 \times 1.68} = 125.92$$

Atomicity =
$$\frac{\text{Mol. wt.}}{\text{At. wt.}} = \frac{125.92}{31} = 4.02$$

So. Molecule is $= P_4$.

13. (2)

Sol: Given, w = 0.2 g, W = 20 g,

$$\Delta T = 0.45$$
°C

$$\Delta T = \frac{1000 \times K \times w}{m \times W}$$

$$1000 \times 5.12 \times 0.2$$

or
$$0.45 = \frac{}{20 \times m}$$

 \therefore m(observed) = 113.78

Now for $2CH_3COOH \rightleftharpoons (CH_3COOH)_2$

0

Before association 1

After association $1 - \alpha = \alpha/2$

Where α is degree of association

$$\therefore \frac{m_{normal}}{m_{observed}} = 1 - \alpha + \alpha/2$$

or
$$\frac{60}{113.78} = 1 - \alpha + \alpha / 2$$

or $\alpha = 0.945$

or 94.5 %

14. (4)

Sol: Semipermeable membrane allows the solvent particles only to pass through it.

15. (3)

Sol: $\pi_f V_f = \pi_1 V_1 + \pi_2 V_2$

$$\pi_{\rm f} = \frac{1.2 \text{V} + 2.5 \text{V}}{2 \text{V}} = \frac{3.7 \text{V}}{2 \text{V}}$$

 $\pi_{\rm f} = 1.85$ atm.

16. (4)

Sol: For isotonic solution $\pi_1 = \pi_2$; $C_1 = C_2$; $n_1 = n_2$

$$\frac{W_1}{M_1} = \frac{W_2}{M_2} \qquad \Rightarrow \frac{10.5}{M} = \frac{30}{180}$$

$$\Rightarrow M = \frac{10.5 \times 180}{30} = 63$$

17. (4)

Sol: All solution have same No. of particle and also have same value of π . $n_1 = n_2$; $\pi_1 = \pi_2$ (Isotonic).

18. (2)

Sol: HA \longrightarrow H⁺ + A⁻, pH = 2

$$pH = 2$$
 so $[H^+] = 0.01$

Total Concentration = 0.1 + 0.01 = 0.11 M

$$\pi = CRT = 0.11 RT$$

19. (3)

Sol: B.P. of water is elevated.

20. (4)

Sol: For an ideal solution $\Delta S_{mix} \neq 0$

21. (2)

Sol: For negative deviation; $\Delta H_{\text{mix}} < 0$, $\Delta V_{\text{mix}} < 0$.

22. (3

Sol: $P_{Total} = 0.4 \times 80 + 0.6 \times 120 = 104 > 100 \text{ mm of } H\sigma.$

23. (4)

Sol: Both solution will have same value of K_f and ΛT_f .

24. (1)

$$\pi = CRT$$
 7.40 = n × 0.0821 × 300

$$\pi = \frac{n}{v}RT$$
 $n = \frac{7.4}{0.0821 \times 300} = 0.3.$

25. (1)

Sol: When dried fruits and vegetables are place in water, they slowly get swelled due to osmosis i.e. water molecules pass through SPM present in cell-walls. If temperature is increased osmosis will be faster.

26. (3)

Sol: Osmosis is a process in which solvent (water in this case) flows from low concⁿ solⁿ to high concⁿ solⁿ by SPM.

27. (2)

Sol: Moles of urea = $\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 10^{-3}$ moles

Concentration (molarity) of solution = $\frac{10^{-3}}{100} \times$

1000 = 0.01 M.

28. (1)

Sol: Elevation in boiling point is a colligative property which depends upon the number of solute particles. Greater the number of solute particles in a solution, higher the extent of elevation in boiling point.

 $Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2-}$

29. (3)

Sol: $Na_2SO_4 \rightleftharpoons 2Na^+ + SO_4^{2-}$

 $\begin{array}{cccc} 1 & & 0 & & 0 \\ 1-\alpha & & 2\alpha & & \alpha \end{array}$

Vant Hoff factor (i) = $\frac{1-\alpha+2\alpha+\alpha}{1}$ = 1+2 α .

30. (3)

Sol: Equimolar solutions of all the substances in the same solvent will show equal elevation in boiling points as well as equal depression in freezing point.

31. (3)

Total millimoles of solute $= 480 \times 1.5 + 520 \times 1.2 = 720 + 624 = 1344$.

Total volume = 480 + 520 = 1000.

Molarity of the final mixture = $\frac{1344}{1000}$ = 1.344 M.

32. (2)

Sol: Molality, $m = \frac{M}{1000d - MM_2} \times 1000$

where M = molarity, d = density, $M_2 = molecular mass$

 $m = \frac{2.05 \times 1000}{1000 \times 1.02 - 2.05 \times 60} = 2.28 \text{ mol kg}^{-1}$

33. (1)

Sol: The solution is non-ideal, showing +ve deviation from Raoult's Law.

34. (2)

Sol: $P_{total} = P_A^o X_A + P_B^o X_B = P_A^o \times \frac{1}{4} + P_B^o \times \frac{3}{4} = 550 \Rightarrow P_A^o + 3P_B^o = 550 \times 4$ (i)

similarly

 $560 = P^{o}_{A} \times \frac{1}{5} + P^{o}_{B} \times \frac{4}{5}$

 $\Rightarrow P^{o}_{A} + 4P^{o}_{B} = 560 \times 5$ (ii)

eq. (ii) – eq.(i)

 $P_{B}^{o} = 560 \times 5 - 550 \times 4 = 600$

so $P_A^0 = 400$.

35. (2)

Sol: Na₂SO₄(s) $\xrightarrow{\text{H}_2\text{O}}$ 2Na⁺ (aq.) + SO₄²⁻(aq.) $\Delta \text{T}_f = \text{i } \text{K}_f \text{m}$

 $\Delta 1_{\rm f} = 1 \, \text{K}_{\rm f} \text{m}$ = $3 \times 1.86 \times 0.01 = 0.0558 \, \text{K}.$

36. (1)

Sol: $0.5 \text{ M C}_2\text{H}_5\text{OH (aq)}$ $0.1 \text{ M Mg}_3 \text{ (PO}_4)_2 \text{ (aq)}$

i = 1 i = 5

effective molarity = 0.5effective molarity = 0.5 m

0.25 M KBr (aq) 0.125 M Na₃PO₄ (aq)

i=2 i=4

effective molarity = 0.5 M

effective molarity = 0.5 M

Hence all colligative properties are same.

37. (2)

 $Sol: \quad \frac{P_0 - P_S}{P_S} = \frac{n}{N}$

 $\frac{185 - 183}{183} = \frac{1.2 \, / \, M}{100 \, / \, 58}$

 $M \approx 64 \text{ g/mol}$

38. (2)

Sol: Moles of glucose $=\frac{18}{180}=0.1$

Moles of water = $\frac{178.2}{18}$ = 9.9

$$\Rightarrow$$
 $n_{Total} = 10$

$$\Rightarrow \quad \frac{\Delta P}{P^{\circ}} = \frac{0.1}{10}$$

 $\Delta P = 0.01 \ P^o = 0.01 \times 760 = 7.6 \ torr$ $P_S = 760 - 7.6 = 752.4 \ torr$

39. (2)

Sol: According to Henry's law

$$\frac{P_1}{P_2} = \frac{S_1}{S_2}$$

 \therefore S₁ & S₂ are solubility of gas (g/L)

$$\frac{500}{750} = \frac{0.01}{S_2}$$

$$\therefore S_2 = \frac{750 \times 0.01}{500} = 0.015 \,\text{g/L}$$

40. (4)

Sol: For MX_2 type salt

Vant factor (i) = $1 + 2\alpha = 2$

$$\Rightarrow \alpha = 0.5$$

41. (1)

Sol: $P_{N_2} = K_H \times X_{N_2}$

$$x_{N_2} = \frac{1}{10^5} \times 0.8 \times 5 = 4 \times 10^{-5} \text{ per mole}$$

In 10 mole solubility is 4×10^{-4} .

42. (1)

Sol: As T increase, V.P. increases. So, C & D options get rejected.

$$\Delta T_f = K_f \times m$$

$$273 - T_f' = 2 \times \frac{34.5 / 46}{0.5}$$

$$T_f = 270 \text{ K}$$

43. (3)

Sol: When non-volatile solute added to solvent. Due to elevation in boiling point, boiling point↑ and due to depression in freezing point, freezing temperature↓.

44. (3)

Sol: As $\Delta T_b = i K_b m$

so iK_b m can be expressed in degree (Unit of temperature)

and K_b m can be expressed in degree (Unit of temperature)

and $\frac{\Delta T_b}{i}$ can be expressed in degree (Unit of temperature)

But `unit of K_b is mol⁻¹ kg K

45. (1)

Sol: From given graph, we can say T_1 is that temp at which solid state and liquid (solution) are in equilibrium.

46. (4)

Sol: $P = P_A \circ X_A + P_B \circ X_B$

$$\frac{100}{4} + \frac{60 \times 3}{4} = 70 \text{ mm} < 75 \text{ mm (experimental)}$$

Thus, there is positive deviation (1) is true, mixture is more volatile due to decrease in b.p. Thus, (2) is true also force of attraction is decreased thus (3) is true.

47. (4)

Sol: In HF hydrogen bonding is present so there is association of molecules due to this van't hoff factor is less, so depression in f.p decreases therefore f.p. value is larger than HCl. Similarly value of i = 2 for NaCl and i = 1 for Glucose.

48. (2)

Sol: Boiling point get lowered when vapour pr. increases and it happens when there is a positive deviation from Raoult's law.

49. (1)

Sol: Mixtures of CHCl₃ and CH₃COCH₃ shows negative deviation from Raoult's law, so vapour pressure decreases and boiling point increases.

50. (4)

Sol: All are facts.

We should remember that, Entropy of solution is more than entropy of pure solvent. So the difference in entropy change will be less in case of solution. 51. (1)

Sol: $M_{observed} = \frac{58.5}{i}$; i > 1.

52. (2)

Sol: There is very weak attraction between benzene and methanol as compare to attraction between molecules of methanol.

53. (1)

Sol: KOH solution is 30% by weight.

 \therefore wt. of KOH = 30 g and Wt. of solution = 100 g

 \therefore Volume of solution = $\frac{100}{d}$

 $\therefore \quad \text{Molarity} = 6.90 = \left(\frac{30}{56 \times \frac{100}{1000 \times d}}\right)$

 $= 1.288 \text{ g mL}^{-1}$

54. (2)

Sol: Ostomic pressure of such substances are measurable.

55. (2)

Sol: As $m \rightarrow 0$ (infinite dilution) both electrolytes will be completely dissociated so

 $NaCl \rightleftharpoons Na^+ + Cl^-$

 $NaHSO_4 \rightleftharpoons Na^+ + H^+ + SO_4^{2-}$.

56. (1)

Sol: $\Delta T_b = ik_b m$ so $i = \frac{2.08}{0.52 \times 1} = 4$ so the compex is K_3 [Fe(CN₆)]

 K_3 [Fe(CN)₆] \longrightarrow 3 K⁺+ [Fe(CN)₆]³⁻

57. (2

Sol: $0.0558 = i \times 1.86 \times \frac{0.01}{1} \Rightarrow i = 3$

 \Rightarrow fully ionized

 $0.0744 = i \times 1.86 \times \frac{21.68}{271 \times 2} \Rightarrow i = 1$

⇒ fully unionized

58. (3)

Sol: Theoretical

59. (1)

Sol: $\pi = i$. CRT

(I) i for NaCl;

(S) $\pi = 2 \times 0.10 \text{ RT} = 0.20 \text{ RT}$

(II) i for Na₂SO₄;

(R) $\pi = 0.2 \times 3 \text{ RT} = 0.6 \text{ RT}$

(III) i for Ca(NO₃)₂;

(Q) $\pi = 0.1 \times 4 \text{ RT} = 0.4 \text{ RT}$

(IV) i for Al(NO₃)₃;

(P) $\pi = 0.1 \times 3 \text{ RT} = 0.3 \text{ RT}$

60. (1)

Sol: (I) $i = 1 + (4 - 1) \times 0.8 = 3.4$

(II) $i = 1 + (3 - 1) \times 0.9 = 2.8$

(III) $i = 1 + (4 - 1) \times 0.9 = 1 + 2.7 = 3.7$

 $(IV)i = 1 + (5 - 1) \times 0.7 = 1 + 4 \times 0.7 = 3.8$

Integer Type Questions (61 to 75)

61. (30)

Total mass of solution = (15 + 35) gram = 50 gram

mass percentage of methyl alcohol

 $= \frac{\text{Mass of methyl alcohol}}{\text{Mass of solution}} \times 100$

 $=\frac{15}{50}\times 100=30\%$

62. (260)

As $X_A \longrightarrow 1$. Then we will have pure methanol so $P_T = 120 X_A + 140 = 120 + 140 = 260 \text{ mm}$ of Hg.

63. (3)

Sol: If the solution is infinitely dilute, NaHSO₄ would dissociate completely.

 $\therefore \text{ NaHSO}_4 \longrightarrow \text{Na}^+ + \text{HSO}_4^-$

HSO₄ would further dissociate as:

 $HSO_4^- \longrightarrow H^+ + SO_4^{2-}$

i = 3

64. (150)

 $\frac{1}{5} = \frac{(W/60)}{(W/60) + (180/18)}$

Sol: Lowering of V.P. is colligative property thus,
$$i (K_2SO_4) = 1 + (y - 1) x = 1 + 2x = 3$$

$$\therefore \quad \text{If } \frac{\Delta p}{p^\circ} = \frac{n_1 i}{n_1 i + n_2}$$

$$\frac{10}{50} = \frac{3n_1}{3n_1 + 12} = \frac{n_1}{n_1 + 4}$$

$$n_1 = 1$$

$$P_{B} = P_{B}^{o} XB$$
 $P_{B}^{o} = 75 \text{ torr}$
 $P_{B} = P_{B}^{o} XB$ $P_{B}^{o} = 75 \text{ torr}$
 $P_{B} = \frac{78/78}{(78/78) + (46/92)} = \frac{1}{1 + 0.5} = \frac{1}{1.5} P_{B} =$

67. (350)

According to Raoult's law

$$\begin{split} P &= P_A + P_B = P^o_{AX} + P^o_{BX_B} \\ or \quad 290 &= P^o_{A} \times (0.6) + 200 \times (1 - 0.6) \\ or \quad 290 &= 0.6 \times P^o_{A} + 0.4 \times 200 \\ or \quad P^o_{A} &= 350 \text{ mm}. \end{split}$$

$$\Delta T_f = i \times k_f \times m$$

$$2.8 = 1 \times 1.86 \times \frac{x}{62 \times 1}$$

$$x = \frac{2.8 \times 62}{1.86} = 93 \text{ gm}$$

$$\Delta T_f = imk_f$$

$$3.82 = [1+(3-1).815]m \times 1.86$$

$$m = \frac{3.82}{2.63 \times 1.86} = \frac{5}{142} \times \frac{1000}{x}$$

$$x = 45 g$$

Sol: Volume of solution =
$$\frac{\text{Mass}}{\text{Density}} = \frac{1120}{1.15} \text{ mL}$$

Molarity of solution can be calculated as

$$M = \frac{w_B \times 1000}{m_B \times V} = \frac{120 \times 1000}{60 \times (1120)/1.15} = 2.05 \text{ M}$$

$$RLVP = \frac{i \quad n_{NaCl}}{i \quad n_{NaCl} + n_{H_2O}} \qquad ; \ 0.4 = \frac{i}{i+3} \label{eq:RLVP}$$

so
$$i=2$$

$$\therefore$$
 i = 1 + α so α = 1 or 100%

72. (210)

Isotonic solutions have same osmotic pressure.

$$\pi_1 = C_1 RT$$
, $\pi_2 = C_2 RT$

For isotonic solution, $\pi_1 = \pi_2$

$$C_1 = C_2$$
.

or
$$\frac{1.5/60}{V} = \frac{5.25/M}{V}$$
 [where M = molecular

weight of the substance]

or
$$\frac{1.5}{60} = \frac{5.25}{M}$$
 or $M = 210$.

73. (72)

$$P_{T} = X_{\text{Heptane}} P^{\text{o}}_{\text{Heptane}} + X_{\text{Octane}} P^{\text{o}}_{\text{Octane}}$$
$$= \frac{0.25}{0.557} \times 105 + \frac{0.307}{0.557} \times 45$$

$$47.127 + 24.80 = 71.92 \approx 72 \text{ kPa}$$

74. (293)

$$\pi = CRT$$

$$\pi = \frac{c}{M}RT$$
 C = moles/liter,

$$c = kg/m^3$$

$$\frac{\pi}{c} = \frac{RT}{M}$$

$$M = \frac{RT}{\pi/c} [\pi/c = 8.314 \times 10^{-3}]$$

$$M = \frac{8.314 \times 293}{8.314 \times 10^{-3}} = 293 \times 10^{3} [T = 293 k]$$

75. (325)

Apply raoult's law:

$$P_{Total} = X_A P_A^{\circ} + X_B P_B^{\circ}$$

$$= \left(\frac{0.1}{0.1 + 0.1}\right) \times 415 + \left(\frac{0.1}{0.1 + 0.1}\right) \times 200$$

= 307.5 mmHg

Mole fraction of CHCl₃ in vapour form (Y_B)

$$=\frac{X_{\rm B}P_{\rm B}^{\circ}}{P_{\rm Total}}=\frac{0.5\times200}{307.5}=0.325$$

ELECTROCHEMISTRY

Single Option Correct Type Questions (01 to 60)

1. (1)

Sol: In electrochemical cell, H₂ is anode and Cu is cathode because of their standard reduction potential values.

2. (4)

Sol: Hydrogen electrode contains Pt-conductor coated with platinum black which adsorb Hydrogen on its surface.

3. (2)

Sol: Electron will travel from anode to cathode.

4. (1)

Sol: The value of standard electrode potential of Pb²⁺ is more than that of Fe²⁺ So Fe will get oxidized and Pb²⁺ will get reduced.

5. (2)

Sol: $Zn + 2Ag^+ \longrightarrow 2Ag + Zn^{2+}$ $E^{\circ}_{cell} = 0.76 - (-0.80) = 1.5 \text{ eV}$

6. (3)

Sol: M is more reactive than carbon and B is more relative than A. Also both B and A are less reactive than C.

7. (1)

Sol: $E = -2.36 - \frac{0.0591}{1} \log \frac{1}{0.1} = -2.41 \text{ V}$

8. (4)

Sol. $E = E^{\circ} - \frac{0.06}{2} \log \left(\frac{Ti^{+}}{Cu^{+2}} \right)^{2}$

9. (2)

Sol: $E = E^{\circ} - \frac{0.06}{2} \log \left(\frac{Zn^{+2}}{Ag^{+}} \right)^{2} \Rightarrow \log \frac{\left[Zn^{+2} \right]}{\left[Ag^{+} \right]}$ $= 2(E^{\circ} - E)$

10. (1)

Sol: $\frac{W}{2 \times 2} = \frac{W'}{4 \times 1}$

11. (4)

Sol: Faraday's second law- the amounts of elements deposited on the electrodes are in the ratio of their equivalent masses

12. (1)

Sol: PbSO₄ is formed

13. (3)

Sol: Electrolyte $CuSO_4$ dissociates as Cu^{2+} and SO_4^{-2} along with H^+ and OH^- ions in the aqueous solution.

Cu²⁺ has higher reduction potential than H⁺, it gets preferentially reduced and OH⁻ has higher oxidation potential than SO₄⁻², it gets preferentially oxidised.

Hence, Cu at cathode and O_2 at anode are produced.

14. (4)

Sol: The characteristics of fuel cell.

15. (4)

Sol: The conductance of strong electrolyte like NaCl will increase with concentration.

Specific conductance = Conductance × cell constant.

Higher the conductance, higher is the specific conductance.

Sol:
$$\lambda_{Ag^{+}} = 62.3 \text{ Scm}^{2} \text{ mol}^{-1}, \lambda_{cl^{-}} = 67.7 \text{ Scm}^{2}$$

mole⁻¹

$$K_{Agcl} = 3.4 \times 10^{-6} \text{ Scm}^{-1}$$

$$\wedge_{\text{AgCl}}^{\infty} = (62.3 + 67.5) = \frac{1000 \times 3.4 \times 10^{-6}}{\text{S}}$$

$$S = \frac{3.4 \times 10^{-3}}{(62.3 + 67.5)} = 2.6 \times 10^{-5} M$$

Sol:
$$\Lambda_{eq} = \frac{k \times 1000}{N} = \frac{0.0014 \times 1000}{0.01}$$

= 140 cm² Ω^{-1} eq⁻¹

Sol: Fe
$$\rightarrow$$
Fe²⁺ + 2e⁻ (At anode)
O₂ + 2H₂O + 4e⁻ \rightarrow 4OH⁻ (At cathode)

The overall reaction is:

$$2\text{Fe} + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}(\text{OH})_2$$

Fe(OH)₂ can be dehydrated to iron oxide FeO, or further oxidised to Fe(OH)₃ and then dehydrated to iron rust, Fe₂O₃

Sol: As
$$E^{\circ}_{Cu^{2+}} \longrightarrow Cu = 0.337 \text{ V} > E^{0}_{H^{+}/H_{2}}$$

 \therefore Cu²⁺ can be reduced by H₂.

Sol:
$$H^+ + e^- \longrightarrow \frac{1}{2} H_2$$
. $E = 0 - \frac{.0591}{1}$
 $\log_{10} \frac{1}{[H^+]} = +0.591 \log_{10}[H^+]$.

$$E_1 = 0 \ \{pH = 0\}.$$

$$E_2 = +0.0591\log_{10}[10^{-7}]$$

$$= -.0591 \times 7$$
 {at pH = 7} = -0.41 V.

Sol: Number of moles of
$$Cu^{2+}$$
 discharged from anode = number of moles of Cu^{2+} deposited at cathode.

$$2H_2O(\ell) + O_2(g) + 4e^- \longrightarrow 4OH^-(aq)$$

Sol:
$$2\text{Fe} + \frac{3}{2} \text{ O}_2 \longrightarrow \text{Fe}_2\text{O}_3$$

Brown

$$Cu + CO_2 + H_2O \longrightarrow CuCO_3$$
. $Cu(OH)_2$

$$Ag + H_2S \longrightarrow Ag_2S$$
Black

Sol:
$$E_1 = \frac{-0.059}{1} \log [H^+]$$

or
$$pH_1 = E_1 / 0.059 = pK_a + log \frac{x}{v}$$

$$pH_2 = E_2 / 0.059 = pK_a + log \frac{y}{x}$$

or
$$\frac{E_1 + E_2}{0.059} = 2 \text{ pK}_a$$

or
$$pK_a = \frac{E_1 + E_2}{0.118}$$

Sol:
$$E_{Fe^{2+}/Fe}^{\circ} = -0.441 \text{ V}$$

$$E_{Fe^{3+}/Fe}^{\circ} = -0.771 \text{ V}$$

$$E_{cell}^{\circ} = E_{OP_{Fe/Fe^{2+}}}^{\circ} + E_{RP_{Fe^{3+}/Fe^{2+}}}^{\circ}$$

(see redox change)

$$= +0.441 + 0.771 = 1.212 \text{ V}$$

29. (3)

Sol: Salt bridge is used to remove or eliminate liquid junction potential arised due to different relative speed of ions of electrolytes at the junction of two electrolytes in an electrochemical cell. Thus, A salt used for this purpose should have almost same speeds of its cation and anion.

30. (2)

Sol: $E_{cell} = E_{cell}^0 - \frac{0.0591}{2} \log_{10} \frac{1}{[Cu^{2+}]}$.

31. (2)

Sol: Concentration of H₂SO₄ increases ; O₂, H₂

32. (1)

Sol: Electrolyte Na₂SO₄ dissociates as Na⁺ and SO₄⁻² along with H⁺ and OH⁻ ions in the aqueous solution.

H⁺ has higher reduction potential than Na⁺, it gets preferentially reduced and OH⁻ has higher oxidation potential than SO₄⁻², it gets preferentially oxidised.

Hence, H_2 at cathode and O_2 at anode are produced.

33. (2)

Sol: $\frac{1000 \times 2}{(55+32)} = \frac{27 \times 24 \times 3600 \times \eta}{96500}$

or $\eta = 0.951 = 95.1\%$

34. (1)

Sol: The cells whose E°_{cell} is zero are called concentration cells.

Nernst equation:

 $E = E^{\circ} - 2.303 \frac{RT}{nf} \log Q$

 $E_{cell} = \frac{RT}{nF} \ln \frac{[Cl^-]_{LHS}}{[Cl^-]_{RHS}}$

35. (4)

Sol: The number of ions per unit volume carrying the current decreases on dilution, so conductivity always decreases with decrease in

concentration, whereas molar conductivity increases with dilution. Hence the number of ions per unit volume that carry charge in a solution decreases.

36. (3)

Sol: The SRP of water is -1.23 V, if any substance has SRP value between -1.23 to zero, then reduction of the substance will be possible in basic medium.

37. (2)

Sol: The E^o of cell will be zero.

38. (3)

Sol: At LHS (oxidation) $2 \times (Ag \longrightarrow Ag^+ + e^-)$ $E^o_{ox} = -x$

> At RHS (reduction) $Cu^{2+} + 2e^{-} \longrightarrow Cu$ $E_{red}^{\circ} = + v$

 $2Ag + Cu^{2+} \longrightarrow Cu + 2Ag^{+},$ $E^{o}_{red} = (v - x)$

39. (4)

Sol: $0 = 0.295 - \frac{0.059}{2} \log K;$

 $\log K = 10$; $K = 10^{10}$.

40. (3

Sol: $E^{o}_{cell} = 0.77 + 0.14 = 0.91 \text{ volt.}$

41. (3

Sol: $Zn + 2H^{+}_{(aq)} \longrightarrow Zn^{2+}(aq) + H_2(g)$

 $E = E^{o} - \frac{0.0591}{2} \log \frac{[Zn^{2+}]pH_2}{[H^{+}]^2}$

Adding H₂SO₄ means increasing H+ and therefore Ecell will increase and reaction will shift to forward direction.

42. (1)

Sol: $Cr^{2+} | Cr^{3+} = +0.41V$

 $Mn^{2+} | Mn^{3+} = -1.57V$

 $Fe^{2+} \mid Fe^{3+} = -0.77V$

 $Co^{2+} \mid Co^{3+} = -1.97V$

As Cr will have maximum oxidation potential value, therefore its oxidation will be easiest.

Sol:
$$CH_3COONa + HCI \rightarrow CH_3COOH + NaCI$$

From the reaction,

$$\Lambda_{\text{CH}_3\text{COONa}}^0 + \Lambda_{\text{HCI}}^0 = \Lambda_{\text{CH}_3\text{COOH}}^0 + \Lambda_{\text{NaCI}}^0$$

or
$$\Lambda_{\text{CH}_3\text{COOH}}^0 = \Lambda_{\text{CH}_3\text{COONa}}^0 + \Lambda_{\text{HCI}}^0 -$$

 Λ^{o}_{NaCI}

Thus to calculate the value of $\Lambda^0_{CH_3COOH}$ one should know the value of Λ^o_{NaCI} along with $\Lambda^0_{CH_3COON_a}$ and Λ^o_{HCI} .

Sol:
$$0.152 = -0.8 - \frac{0.059}{1} \log K_{SP}$$
; $\log K_{SP} = -16.11$.

Sol:
$$E = E^{\circ} - \frac{0.0591}{n} \frac{[Zn^{2+}]}{[H^{+}]^{2}}$$
, If $[H^{+}]$ increases then E_{cell} also increases.

Sol:
$$0 = +1.1 - \frac{0.0591}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]};$$

 $\log \frac{[Zn^{2+}]}{[Cu^{2+}]} = 37.3.; \frac{[Zn^{2+}]}{[Cu^{2+}]} = 10^{37.3}$

Sol:
$$E_{cell} = E_{cell}^0 - \frac{0.059}{6} \log \frac{[Cr^{+3}]^2}{[Fe^{+2}]^3}$$

= $0.3 - \frac{0.056}{6} \log \frac{(0.1)^2}{(0.01)^3} = 0.3 - 0.04$
= 0.26 V

$$\begin{aligned} \textbf{Sol:} & \quad \frac{2}{3} \, \text{Al}_2 \, \text{O}_3 \, \longrightarrow \frac{4}{3} \, \, \text{Al} + \text{O}_2 \\ & \quad \Delta_r G = +966 \, \text{kJ mol}^{-1} = 966 \times 10^3 \, \text{J mol}^{-1} \\ & \quad \Delta G = - \, \text{nFE}_{cell} \\ & \quad 966 \times 10^3 = -4 \times 96500 \times \text{E}_{cell} \\ & \quad \text{E}_{cell} = 2.5 \, \text{V} \end{aligned}$$

Sol:
$$2H^{+}(aq) + 2e^{-} \longrightarrow H_{2}(g)$$

 $E_{red} = E^{o}_{red} - \frac{0.0591}{n} \log \frac{P_{H_{2}}}{(H^{+})^{2}}; \quad E_{red} = 0$
 $-\frac{0.0591}{2} \log \frac{2}{(1)^{2}}; E_{red} = -\frac{0.0591}{2} \log 2$

 \therefore E_{red} is forund to be negative for (3) option.

Sol:
$$x = 1.4 \text{ S/m}.$$

$$R = 50 \Omega$$

$$M = 0.2$$

$$K = \frac{1}{R} \times \frac{\ell}{A}$$

$$\Rightarrow \frac{\ell}{\Delta} = 1.4 \times 50 \text{ m}^{-1}.$$

Now, new solution has M = 0.5, $R = 280 \Omega$

$$\Rightarrow K = \frac{1}{R} \times \frac{\ell}{A} = \frac{1}{280} \times 1.4 \times 50 = \frac{1}{4}$$

$$\Rightarrow \Lambda_{\rm M}$$

$$=\frac{K}{100 \times M} = \frac{\frac{1}{4}}{1000 \times 0.5} = \frac{1}{2000} = 5 \times 10^{-4}$$

Sol:
$$\lambda_C = \lambda_\infty - B\sqrt{C}$$
 (Debye Huckel onsager equation)

Sol:
$$Mn^{3+} \xrightarrow{E_1^0 = 1.51V} Mn^{2+} \xrightarrow{E_2^0 = -1.18V} Mn$$

 \therefore for Mn^{2+} disproportionation, $E^0 = -1.51$
 $V - 1.18 V$
 $= -2.69 V < 0$

Reaction is non-spontaneous.

$$\therefore$$
 6.35 g, we require $\frac{N_A}{5}$ electrons.

Sol:
$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$

E = 1.51 -
$$\frac{0.059}{5}$$
 log $\frac{[Mn^{2+}]}{[MnO_4^{-}][H^{+}]^8}$

Taking Mn^{2+} and MnO_4^- in standard state i.e. 1 M,

$$E = 1.51 - \frac{0.059}{5} \times 8 \log \frac{1}{[H^+]} = 1.51 -$$

$$\frac{0.059}{5} \times 8 \times 3 = 1.2268 \text{ V}$$

Hence at this pH, MnO_4^- will oxidize only Br⁻ and I⁻ as SRP of Cl_2/Cl^- is 1.36 V which is greater than that for

$$MnO_{4}^{-}/Mn^{2+}$$
.

Sol:
$$E_{T\ell/T\ell^+}^o = +0.34V$$

$$= E_{Af/Af^{+}}^{0} = + 0.55V$$

Therefore $T\ell^+$ more stable

$$M_{(s)} + 3Ag^{\scriptscriptstyle +}\left(aq\right) \, \longrightarrow \, M^{3+}\left(aq\right) + 3Ag_{(s)}$$

Applying Nernst equation:

$$E_{cell} = 1 E_{cell}^{o} - \frac{0.059}{n} \log_{10} Q$$

$$0.421 = (0.8 - E_{M^{3+}/M}^{0}) - \frac{0.059}{3} \log_{10} \frac{0.001}{(0.01)^{3}}$$

$$E_{M^{3+}/M}^{0} = 0.32V$$

Sol:
$$2Cu^{+1} \longrightarrow Cu + Cu^{+2}$$

$$2Cu^{+1} + 2e \longrightarrow 2Cu$$

$$Cu - 2e \longrightarrow Cu^{+2}$$

$$2Cu^{+1} \longrightarrow Cu^{+2} + Cu$$

$$\therefore E^{\circ} \frac{2 \times 0.521 + 2(-0.337)}{2}$$
$$= 0.184$$

Sol:
$$ClO_3^- + 2H_2O + 4e \longrightarrow ClO^- + 4OH^-;$$

 ΔG_1°

$$ClO^- + H_2O + e \longrightarrow \frac{1}{2}Cl_2 + 2OH^-; \ \Delta G2^{\circ}$$

$$\frac{1}{2} \text{ Cl}_2 + e \longrightarrow \text{Cl}^-; \ \Delta G_3^\circ$$

$$ClO_3^- + 3H_2O + 3e \longrightarrow Cl^- + 6OH^-$$
; ΔG°

$$\therefore \quad \Delta G^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ} + \Delta G_3^{\circ}$$
$$-6FE^{\circ} = -4F \times 0.54 - 1F \times 0.45 - 1F \times 1.07$$

$$E^{\circ} = +\frac{3.68}{6} = +0.61 \text{ V}$$

Sol:
$$Zn + Ni^{+2} \longrightarrow Zn^{+2} + Ni$$

 $E^{\circ} = E^{\circ}_{Ni^{+2}/Ni} - E^{\circ}_{Zn^{+2}/Zn}$
 $= -0.23 - (-0.76) = +0.53 \text{ V}$

Positive value shows that the process is spontaneous.

Rest of all (I) (II) (III) combination have negative E° value.

(I)
$$E^{\circ} = -0.44 - (-0.23) = -0.21 \text{ V}$$

(II)
$$E^{\circ} = -0.76 - (-0.23) = -0.53 \text{ V}$$

(III)
$$E^{\circ} = -0.76 - (-0.44) = -0.32 \text{ V}$$

Sol:
$$H^+ + e^- \longrightarrow \frac{1}{2}H_2$$
.
 $E = 0 - \frac{.0591}{1} \log_{10} \frac{1}{[H^+]} = +0.0591$
 $\log_{10}[H^+]$.
 $E_1 = 0 \text{ {pH = 0}}$.
 $E_2 = +0.0591\log_{10}[10^{-14}]$
 $= -.0591 \times 14 \text{ {at pH = 14}}$
 $= -0.82 \text{ V}$.

Integer Type Questions (61 to 75)

61. (120)
Sol:
$$E_{cell} = E_{cell}^0 - \frac{0.06}{1} \log_{10}[H^+] [Cl^-]$$

and $E_{cell}^{'} = E_{cell}^0 - \frac{0.06}{1} \log_{10} 100[H^+] [Cl^-]$.
 $E_{cell}^{'} - E_{cell} = -2 \times 0.06$
 $-\frac{x}{1000} = -0.120$. $x = 120$

62. (3) **Sol:** At anode

$$40H^{-} \longrightarrow O_2 + 2H_2O + 4e^{-}$$
$$2SO_4^{-2} \longrightarrow S_2O_8^{-2} + 2e^{-}$$

1 mol of O_2 requires 4 mole or 4f of electricity 1 mol of $S_2O_8^{-2}$ requires 2f of electricity

3 mole

Total charge used at Anode = 2f + 4f = 6f

$$4x + 2x = 6 \times f$$

At cathode

$$2H^+ + 2e^- \longrightarrow H_2$$

 $2 \; mole \; e^{-} \, (2f) \; liberate \; 1 \; mole \; H_2$

63. (65)

Sol:

Anode
$$H_2 \longrightarrow 2H^+ + 2e^-$$

Cathode $HgCl_2 \to 2H^+ + 2Hg + 2Cl^ H_2 + HgCl_2 \longrightarrow 2H^+ + 2Hg + 2Cl^ E_{cell} = E_{cell}^0 - \frac{0.06}{2} \log[H^+]^2[Cl^-]^2$
 $0.67 = E_c^0 - E_a^0 - 0.06 \log[H^+][1]$
 $0.67 = 0 - (-0.28) - 0.06 \log[H^+]$
 $\frac{0.67 - 0.28}{0.06} = -\log[H^+]$
 $\frac{0.39}{0.06} = pH$
 $pH = 6.5 = \frac{x}{10}$
 $x = 65$

64. (11)

Sol: $0.34 = \frac{0.06}{2} \log K_{eq}$
 $\log K_{eq} = 11.3 \text{ or } K_{eq} = 2 \times 10^{11} = 2 \times 10^x$
 $\Rightarrow x = 11$

65. (94)

Sol: $E = 0.80 - (-0.14) = 0.94 \text{ V} = \frac{x}{100} \Rightarrow x = 94$

66. (26)

Sol: $0.52 = \frac{y}{50} \Rightarrow y = 26$

67. (193)

Sol: $\frac{0.55}{M} \times 3 = \frac{0.55 \times 100 \times 60}{96500}$
 $\Rightarrow M = 48.25 \text{ g/mol} = \frac{z}{4} \Rightarrow z = 193$

68. (31)

Sol: $5 = \frac{52 \times 15 \times t}{3 \times 96500} \Rightarrow t = 31$

 $Q = it = 100 \times 10^{-3} \times 30 \times 60 = 180$

Sol:
$$\frac{(W)_{H_2}}{(W)_{Cu}} = \frac{(Ew)_{H_2}}{(Ew)_{Cu}}$$

$$\frac{0.504}{\text{(W)}_{\text{Cu}}} = \frac{\frac{2}{2}}{\frac{63.5}{2}}$$

$$\Rightarrow$$
 W_{Cu}= 16 gm

Sol: Ka =
$$25 \times 10^{-6} \land_{eq} = 19.6 \text{ Scm}^2 \text{ eq}^{-1}$$
, C = 0.01

$$Ka = 0.01 \times \alpha^2$$

$$\Rightarrow \alpha = \sqrt{\frac{25 \times 10^{-6}}{10^{-2}}} = 5 \times 10^{-2}$$

$$\alpha = 5 \times 10^{-2} = \frac{19.6}{^{\circ}_{eq}}$$

$$\Rightarrow \land_{eq}^{\circ} = \frac{19.6}{5 \times 10^{-2}} = 392 \text{ Scm}^2 \text{ eq}^{-1}.$$

Sol: Conductance (G) =
$$\frac{1}{R} \Rightarrow \frac{1}{300}$$

$$\therefore \quad \kappa = G\left(\frac{\ell}{A}\right)$$

Cell constant
$$\left(\frac{\ell}{A}\right) = \frac{0.013}{1} \times 300 = 3.9 \text{ cm}^{-1}$$

$$=\frac{x}{10} \Rightarrow x = 39$$

Sol:
$$x = \frac{\Lambda_{eq}^{c}}{\Lambda_{eq}^{\infty}} = \frac{80}{400} \times 100$$

Sol: Moles of hydrogen =
$$\frac{5600}{22400}$$
 = 0.25,

$$2H^+ + 2e^- \longrightarrow H_2$$

: 1 mole of hydrogen required 2 moles of electrons

 \div 0.25 mole of hydrogen required 2×0.25 moles of electrons

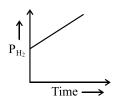
$$Ag^+ + e^- \longrightarrow Ag$$

1 mole of silver requires 1 mole of electrons. Moles of silver deposited = 0.50 moles Mass of silver = $0.5 \times 108 = 54$ gm

Sol:
$$\frac{W}{7} = \frac{1930 \times 0.75}{96500}$$
; $W = 0.105 \text{ g}$
 $x = 0.105 \times 1000 = 105$

CHEMICAL KINETICS

Single Option Correct Type Questions (01 to 60)


Sol:
$$\frac{1}{C_t} = \frac{1}{C_0} + Kt$$
.

$$\frac{1}{0.04} = \frac{1}{0.02} + 0.002 \times t.$$

$$\Rightarrow$$
 25 = 5 + 0.002 × t

$$\Rightarrow$$
 t = $\frac{20}{2 \times 10^{-3}}$ = 10,000 sec.

Sol:
$$2HI(g) \longrightarrow H_2(g) + I_2(g)$$
 (zero order)
 $t = 0$ a b 0 b P_{H_2} , initial

$$t=t \hspace{1cm} a-2x \hspace{0.5cm} b+x \hspace{0.5cm} P_{H_2} \hspace{0.5cm} \varpropto (b+x)$$

$$\Rightarrow$$
 $P_{H_2} = P_{H_2}$, initial + kt (zero order reaction)

Sol:
$$t_{1/2} \propto \frac{1}{\text{(initial conc.)}^{\text{order-1}}}$$

Sol:
$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

$$\frac{15}{10} = \left(\frac{200}{300}\right)^{n-1}$$

$$\frac{3}{2} = \left(\frac{2}{3}\right)^{n-1}$$

$$n-1 = -1$$

$$n = 0$$

Sol:
$$X \propto t$$
 order = 0

$$\frac{-d(A)}{dt}$$
 = constant

Sol:
$$\log \frac{K_2}{K_1} = \frac{\Delta E_a}{2.303RT}$$

$$=\frac{4.606\times1000}{2.303\times2\times500}=2$$

$$\frac{K_2}{K_1} = 10^2 \text{ K}_2 = 100 \text{ K}_1$$

Sol:
$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{150.5} \text{ min}^{-1} ; t = \frac{2.303}{k} \log$$

$$\frac{100}{100 - 40} = \frac{2.303 \times 150.5}{0693} \quad \log \quad \frac{100}{60} = 111$$
 minutes

Sol: Mol L⁻¹ of N₂O₅ reacted =
$$2 \times 0.1 = 0.2$$
; [N₂O₅] left = $1.0 - 0.2 = 0.8$ mol L⁻¹

Rate of reaction =
$$k \times [N_2O_5] = 3.0 \times 10^{-4} \times 0.8$$

= 2.4 × 10⁻⁴ mol L⁻¹ s⁻¹;

Rate of formation of NO₂ =
$$4 \times 2.4 \times 10^{-4} = 9.6 \times 10^{-4}$$
 mol L⁻¹s⁻¹.

9. (4)

Sol: rate of reaction depends up on conc., pressure of O_2 and surface area of iron.

10. (2)

Sol:
$$4A + B \longrightarrow 2C + 2D$$

 $-\frac{1}{4} \frac{d[A]}{dt} = \frac{d[B]}{dt} = +\frac{1}{2} \frac{d[C]}{dt} = \frac{1}{2} \frac{d[D]}{dt}$

11. (3

Sol:
$$k = \frac{2.303}{t} \log \left(\frac{P_i}{P_t} \right)$$
;
 $(CH_3)_2 N_2 \longrightarrow C_2H_6 + N_2$
 $t = 0$ 200 0 0
 $200 - x$ x x
as per given $200 + x = 350$ $x = 150$

$$k = \frac{2.303}{t} \log \left(\frac{200}{200 - 150} \right)$$

$$k = 3.45 \times 10^{-4} \text{ sec}^{-1}$$

12. (4)

Sol:
$$E_a = 41570 \times R = 41570 \times 8.31 = 345446.70 J$$

13. (1)

Sol: (I) For zero order reaction
$$C = C_0$$
-kt

(II) For first order reaction $\log C = \log C_0 - \frac{k}{k} \times \frac{1}{k}$

$$\log C = \log C_o - \frac{k}{2.303} \times t$$

(III) For zero order reaction $\frac{-dc}{dt}$ vs C equal to zero

(IV) For first order reaction $\frac{-dc}{dt} = k_{[c]}$, $\log \left(\frac{dc}{dt}\right) = \log k + \log c$

Hence plot of $\log \left(\frac{-dc}{dt}\right)$ against $\log c$ (abscissa) will have slope equal to unity

14. (1

Sol: (I)
$$2.303 \log_{10} \frac{K_2}{K_1}$$

$$= \frac{E_a}{R} \left[\frac{T_2 - T_1}{T_2 T_1} \right] = \frac{65000}{8.314} \left[\frac{25}{273 \times 290} \right] = 2.4$$

$$\Rightarrow \frac{K_2}{K_1} = 11$$

$$T_2 = 298 \text{ K}$$
; $T_1 = 273 \text{ K}$,

$$E_a = 65000 \text{ J}, R = 8.314 \text{ J/(mol K)}$$

(II)
$$\frac{2.5}{20} = \frac{1}{8} = \left(\frac{1}{2}\right)^n$$

$$\Rightarrow$$
 n = 3 \Rightarrow t = 3 $\times \frac{0.693}{0.0693}$ = 30

(III) Zero order:
$$t_{1/2} = \frac{a}{2K}$$
 I order:

$$t_{1/2} = \frac{0.693}{K}$$

$$\frac{1}{2K_1} = \frac{0.693}{K_2}$$

$$\Rightarrow \frac{K_2}{K_1} = 2 \times 0.693$$

(IV)
$$t_{1/2} \propto (a)^{1-n}$$

or
$$(1-n) = \frac{\log t'_{1/2} - \log t''_{1/2}}{\log a' - \log a''}$$

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

$$\Rightarrow \frac{480}{240} = \left(\frac{0.0677}{0.136}\right)^{n-1}$$

$$n = 0$$

15. (1)

Sol: For Ist order reaction,

$$[A]_t = [A]_0 e^{-Kt}$$

$$- \frac{d[A]}{dt} = K [A]_t = [A]_0 K e^{-K t}$$

$$Kt = 2.303 \log [A]_0 - 2.303 \log [A]_t$$

$$\Rightarrow \log [A]_t = \log [A]_0 - \frac{Kt}{2303}$$
.

Sol:
$$2NO + 2H_2 \longrightarrow N_2 + 2H_2O$$

$$\frac{-1}{2} \frac{d[NO]}{dt} = -\frac{1}{2} \frac{d[H_2]}{dt} = \frac{d[N_2]}{dt}$$

$$= \frac{1}{2} \frac{d[H_2O]}{dt} = Rate$$

$$k_1 = \frac{k}{2} = \frac{k_1'}{2} = \frac{k_1''}{2}$$
.

Sol:
$$t = \frac{2.303}{K} \log \frac{C_O}{C_t}$$

$$\Rightarrow t = \frac{2.303}{K} [\log C_O - \log C_t]$$

$$\frac{Kt}{2.303} = \log C_O - \log C_t$$

$$\Rightarrow \log C_t = \left(\frac{-K}{2.303}\right) t + \log C_O$$

So, slope (<+ky) =
$$\left(\frac{-K}{2.303}\right)$$

Sol: According to graph given it would be first order reaction

Sol:
$$C_t = \text{Co kt} \Rightarrow \text{kt} = C_t / \text{Co}$$

 $\frac{\text{kt } 75\% = 0.75\text{co}}{t50\%} \cdot \text{f kt } 50\% = 0.5\text{co}$
 $\frac{t75\%}{t50\%} = \frac{75}{50} = 1.5.$

Sol:
$$\frac{dx}{dt} = K[A]^2$$

$$\log \frac{dx}{dt} = 2\log[A] + \log k$$

$$\log \frac{dx}{dt}$$

compare with $y = m \times + c$ graph obtained

Sol:
$$k = \frac{1}{t} \ln \left(\frac{P_0}{P_t} \right)$$

$$A \rightarrow B + C$$

$$P_0 \qquad 0 \qquad 0$$

$$t = 0$$
, Po 0 0

 $t = t$ Po $x = x$

Sol: Rate increases as temperature increases.

Sol: The effective collisions must posses

i) Energy should be ≥ threshold energy

ii) Molecule should have proper orientation.

Sol: Slower step is rate determining step.

Sol: by graph we can say $\log t_{1/2} = \log a$

$$t_{1/2} = a$$
(1)

 $t_{1/2} \propto a$ for zero order Rxn

$$k \times t_{1/2} = \frac{a}{2}$$
(2)

then
$$k = \frac{1}{2}$$

Sol:
$$K_1 = A_1 e^{-E_1/RT}$$
 and $K_2 = A_2 e^{-E_2/RT}$

$$\frac{K_1}{K_2} = \frac{A_1}{A_2} = e^{(E_2 - E_1)/RT} \; ; \; \; A_1 \; \text{ and } \; A_2 \; \text{ are not}$$
 given.

Sol: For reaction,
$$A \longrightarrow B$$
.

$$E_a = 10 \text{ kJ/mole}, \Delta H = 5 \text{ kJ/mole}$$

Rxn endothermic because ΔH (+)

$$\Delta H = E_a - E_b \Rightarrow 5 = 10 - E_b$$

$$E_{ab} = 10 - 5 = 5 \text{ kJ/mole.}$$
 Then [B].

Sol:
$$\log k = -\frac{E_a}{2.303 \text{ R}} \frac{1}{T} + \text{constant}$$

$$=-\frac{E_a}{2.303 \text{ R}} \times 10^{-3} \times \frac{10^3}{T} + \text{constant}$$

thus, slope of graph will be

$$= -\frac{E_a \times 10^{-3}}{2.303 \text{ R}} = -\frac{4}{0.4}$$

$$\Rightarrow$$
 E_a = 2.303 × 1.98 × 10⁴ = 45600 cal

Sol: Rate =
$$K[X][Y_2]$$

$$K_{eq} = \frac{[X]^2}{[X_2]}$$

$$[X] = \sqrt{K_{eq}} \times [X_2]^{1/2}$$

Rate =
$$K \times \sqrt{K_{eq}} [X_2]^{1/2} [Y_2]$$

So the order of overall reaction is 1.5

Sol:
$$C_3 = \frac{C_0}{2^3} = \frac{C_0}{8}$$

$$\frac{C_3}{C_0} = \frac{1}{8}$$

Sol: Rate = K [reactant]ⁿ, K increases with temperature for any reaction

Sol: The catalyst-reactant interaction forms activated adsorbed complex and adsorption is exothermic and thus a catalyst always lowers the energy of activation.

Sol: An elementary reaction is a single step reaction and has order and molecularity same.

Sol:
$$K = (\text{mol } L^{-1})^{1-n} \sec^{-1}, n = 0, 1.$$

Sol:
$$H_2 + I_2 \rightarrow 2HI$$

When 1 mole of H₂ and 1 mole of I₂ reacts, 2 moles of HI are formed in the same time interval

Thus, the rate may be expressed as

$$\frac{-\Delta[H_2]}{\Delta t} = \frac{-\Delta[I_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[HI]}{\Delta t}$$

The negative sign signifies a decrease in concentration of the reactant with increase of time

$$H_2 + I_2 \rightarrow 2HI$$

Sol: Rate
$$1 = k [A]^n [B]^m$$

On doubling the concentration of A and halving the concentration of B

Rate
$$2 = k [2A]^n [B/2]^m$$

Ratio between new and earlier rate.

$$\frac{k \ [2A]^n \ [B/2]^m}{k \ [A]^n \ [B]^m} = 2^n \times \left(\frac{1}{2}\right)^m = 2^{n-m}$$

Sol: Rate₁ = k
$$[NO]^2 [O_2]$$

When volume is reduced to 1/2, concentration become two times,

$$Rate_2 = k [2NO]^2 [2O_2]$$

$$\frac{\text{Rate}_1}{\text{Rate}_2} = \frac{\text{k [NO]}^2 [O_2]}{\text{k [2NO]}^2 [2O_2]} \text{ or } \frac{\text{Rate}_1}{\text{Rate}_2} = \frac{1}{8}$$

$$\therefore$$
 Rate₂ = 8 Rate₁.

Sol: In Arrhenius equation,
$$k = Ae^{-Ea/RT}$$

k = rate constant, A = frequency factor

T = temperature, R = gas constant, E_a = energy of activation.

This equation can be used for calculation of energy of activation.

Sol:
$$2A + B \longrightarrow C$$

$$rate = k [A] [B]$$

The value of k (velocity constant) is always independent of the concentration of reactant and it is a function of temperature only.

40. (3)

Sol:
$$t_{1/2} = 4 \text{ hours } n = \frac{T}{t_{1/2}} = \frac{24}{4} = 6; N = N_0 \left(\frac{1}{2}\right)^N$$

or, N = 200 ×
$$\left(\frac{1}{2}\right)^6$$

$$=200 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 3.125g.$$

41. (1)

Sol: For endothermic reaction, $\Delta H = + ve \Delta H = E_f - E_b$, it means $E_b < E_f$.

42. (1)

Sol: Generally, molecularity of simple reactions is equal to the sum of the number of molecules of reactants involved in the balanced stoichiometric equation. Thus, a reaction involving two different reactants can never be unimolecular.

43. (3)

Sol: Given rate = k [CO]²

Thus, according to the rate law expression doubling the concentration of CO increases the

rate by a factor of 4. **44. (2)**

Sol: In first order reaction for X% complation

$$k = \frac{2.303}{t} \ log \bigg(\frac{100}{100 - x\%} \bigg)$$

$$\frac{0.693}{t_{1/2}} = \frac{2.303}{t} \log \left(\frac{100}{100 - 99} \right)$$

$$\frac{0.693}{6.93} = \frac{2.303 \times 2}{t}$$

So, t = 46.06 min.

45. (3)

Sol:
$$K_1 = A_1 e^{-Ea_1/RT}$$

$$K_2 = A_2 e^{-Ea_2/RT}$$

$$\frac{K_1}{K_2} = \frac{A_1}{A_2} e^{(E_{a_2} - E_{a_1})/RT}$$

$$K_1 = K_2 A \times e^{E_{a_1}/RT}$$

46. (1)

Sol:
$$\log \frac{K_2}{K_1} = \frac{-E_a}{2.030R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\frac{K_2}{K_1} = 2$$
; $T_2 = 310 \text{ K}$ $T_1 = 300 \text{ K}$

$$\Rightarrow \log 2 = \frac{-E_a}{2.303 \times 8.134} \left(\frac{1}{310} - \frac{1}{300} \right)$$

$$\Rightarrow$$
 E_a = 53598.6 J/mol = 53.6 KJ/mol

47. (4)

Sol:
$$1.2 \times 10^{-3} = K (0.1)^x (0.1)^y$$

$$1.2 \times 10^{-3} = K (0.1)^{x} (0.2)^{y}$$

$$2.4 \times 10^{-3} = K (0.2)^{x} (0.1)^{y}$$

$$R = K [A]^1 [B]^0$$

48. (1)

Sol: $k = Ae^{-Ea/RT}$

So, variation will b

49. (3)

Sol:
$$A(g) + 2B(g) \rightarrow C(g)$$

 $t = 0 \quad 0.4 \text{ atm} \quad 1 \text{ atm} \quad 0 \text{ atm}$
 $t = t \quad (0.4 - 0.3) \text{ atm} \quad (1 - 0.6) \text{ atm} \quad 0.3 \text{ atm}$

Since reaction is elementary.

So, Rate of reaction w.r.t. A & B will be of order equal to stoichiometric coefficient

Rate =
$$K[A][B]^2$$

Rate_(Initial) =
$$K [0.4] [1]^2$$

$$\frac{R_{(t=t)}}{R_{(t=0)}} = \frac{K[0.1] [0.4]^2}{K[0.4] [1]} = \frac{1}{25}$$

50. (4)

Sol:
$$(mol/L)^{1-n}sec^{-1}$$

51. (1)

Sol: Order of reaction is an experimental quantity.

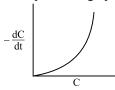
Sol:
$$r_1 = k[A]^2[B]$$
; $r_2 = k[2A]^2[2B] = 8 r_1$

Sol:
$$0.2 \text{ M} \xrightarrow[t_{1/2}=5 \text{ hr}]{} 0.1 \text{ M} \xrightarrow[t_{1/2}=5 \text{ hr}]{} 0.05 \text{ M}$$

From $0.2 \text{ M} \xrightarrow[t=10 \text{ hr}]{} 0.05 \text{ M}$

So $t_{1/2}$ is constant which is characteristic of first order reaction.

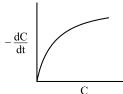
Hence, $t_{1/2} \propto (a)^0$.


Sol: First step is slow (require large activation energy) second step is fast (less activation energy) and overall reaction exothermic, so product energy level should be less as compare to reactants.

Sol: Temperature coefficient =
$$k_{308}/k_{298}$$

Sol:
$$t_{1/2} = \frac{t}{4}$$
; $t_{1/2} = T \ln 2$

so
$$\frac{t}{4} = T \ln 2$$
; $t = 4T \ln 2$


Sol: it is a parabolic graph of
$$y = x^2$$

So, This is the graph of second order

$$y^2 = x$$

$$y = (x) \frac{1}{2}$$

$$\frac{-dc}{dt} = K[C]^{\frac{1}{2}}$$
 So, reaction is $\left(\frac{1}{2}\right)$ order.

Sol: For nth order,
$$t_{1/2} \propto (a)^{1-n}$$
.

$$\Rightarrow \frac{t_{1/2}}{(a)^{1-n}}$$
 or $t_{1/2} \times (a)^{n-1} = \text{Constant}$

$$\therefore \quad \text{Given } \mathbf{t}_{1/2} \times (\mathbf{a})^{n-1} = \text{Constant}$$

$$\Rightarrow (a)^{n-1} = (a)^2 \Rightarrow n-1 = 2 \Rightarrow n = 3$$

Hence, third order reaction.

59. (1)

Sol: For zero order reaction,
$$t_{1/2} \propto (a)^1$$

Ist order IInd order IIIrd order Rate =
$$K[A]^1$$
 $R_2 = K[A]^2$ $R_3 = K[A]^3$ Than we can say $[A] = 1$

$$r_1 = r_2 = r_3$$
 [A] < 1 then

$$r_1 > r_2 > r_3$$

$$y[A] > 1 \text{ then } r_3 > r_2 > r_1$$

Integer Type Questions (61 to 75)

Sol:
$$\log \left(\frac{K_2}{K_1}\right) = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

- $65 \times 10^3 \times (298 - 273)$

$$= \frac{65 \times 10^3 \times (298 - 273)}{2.303 \times 8.3 \times 298 \times 273}$$

Calculation we find

$$\frac{K_2}{K_1} = 11$$

Sol:
$$\underline{A}: a \xrightarrow{5\min} 2a \xrightarrow{5\min} a \xrightarrow{5\min} a/2$$

 $\underline{B}: a \xrightarrow{5\min} a/2$, So time is 15 minutes.

Sol. For zero order
$$t_{1/2} = \frac{a_0}{2k}$$
, so $\underline{t_{1/2} \times a_0} = \frac{a^2}{2k}$ is

For 1^{st} order $t_{1/2}$ is constant so $\underline{t_{1/2} \times a_0}$ is not constant.

For
$$2^{nd}$$
 order $t_{1/2} = \frac{1}{a_0 k}$ so $\underline{t_{1/2} \times c_0 = k}$ is constant.

CHEMICAL KINETICS

Sol:
$$R = K [A]$$

 $R = 4 \times 10^{-3} \times 0.02 = 8 \times 10^{-5} \text{ mole/L sec}^{-1} = x$

$$R = 4 \times 10^{-5} \times 0.02 = 8 \times 10^{-5} \text{ mole/L sec}^{-1} = x$$
$$\times 10^{-6} \Rightarrow x = 80$$

$$\log K = \log A - \frac{E_a}{2.303 RT}$$

$$y = mx + c$$

$$m = -\frac{E_a}{2.303 R}$$
 slope of this

Given.

$$-\frac{E_a}{2.303\,R}=-\frac{1}{2.303}$$

$$E_a = R = 2 \text{ cal} = y$$

Sol:
$$\Delta H = Ea_t - Eab$$

$$-20 = 60 - \text{Eab so Eab} = \text{so.}$$

Sol:
$$\Delta H = E_f - E_b - 40 = 80 - E_b$$

 $E_b = 120 \text{ kJ/mole},$

Catalyst lower the E_f To 20 kJ/ mole for forward Rxn then $E_f' = 20 \text{ kJ/mol}$

we know catalyst decreases the Activation energy equal amount in both direction

$$E_b' = (120 - 60) = 60 \text{ kj/mol}$$

$$\frac{E_b}{E_b'} = \frac{120}{60} = 2.0$$

Order is the sum of the power of the Sol: concentrations terms in rate law expression. R $= [A] \cdot [B]^2$

Thus, order of reaction = 1 + 2 = 3.

Sol: The concentration of the reactant decreases from 0.8 M to 0.4 M in 15 minutes, i.e., $t_{1/2} =$ 15 minute. Therefore, the concentration of reactant will fall from 0.1 M to 0.025 in two half-live. i.e., $2t_{1/2} = 2 \times 15 = 30$ minutes.

Sol:
$$NO(g) + Br_2(g) \longrightarrow NOBr_2(g)$$

$$NOBr_2(g) + NO(g) \longrightarrow 2NOBr(g)$$
 [rate determining step]

Rate of the reaction $(r) = k [NOBr_2] [NO]$

$$[NOBr_2] = K_2[NO][Br_2]$$

$$r = k. K_{c}. [NO] [Br_2] [NO]$$

$$r = k' [NO]^2 [Br_2].$$

The order of the reaction with respect to NO(g)

Sol:
$$\Delta H_R = E_f - E_b = 180 - 200 = -20 \text{ kJmol}^{-1} = x$$

 $\Rightarrow x = 20$

Let A be the activity for safe working. Sol:

Given,
$$A_0 = 10 \text{ A}$$
 Ao × No and A × N
2 303 N 2 303 A

$$t = \frac{2.303}{\lambda} \log \frac{N_o}{N} = \frac{2.303}{\lambda} \log \frac{A_o}{A}$$

$$= \frac{\frac{2.303}{0.693}}{30} \log \frac{10A}{A} = \frac{2.303 \times 30}{0.693} \log 10 =$$

$$\frac{2.303 \times 30}{0.693} = 99.69 \text{ days}$$

Sol: Rate at
$$50^{\circ}$$
C Rate at $T_1 {\circ}$ C = $(2)^{\frac{\Delta T}{T_1}} = (2)^{\frac{50}{10}}$
= $2^5 = 32$ times

Sol: For P, if
$$t_{50\%} = x$$

then
$$t_{75\%} = 2x$$

This happens only in first order reaction. So, order with respect to P is 1.

For Q, the graph shows that concentration of Q decreases linearly with time. So, rate, with respect to Q, remains constant. Hence, it is zero order wrt Q. So, overall order is 0 + 1 = 1

Sol:
$$R = k [A]^m \text{ if } M = 0 \Rightarrow R = K$$

THE p-BLOCK ELEMENTS (GROUP 13 To 18)

Single Option Correct Type Questions (01 to 60)

1. (1)

Sol: Poor shielding by f-and d- electrons enhances the effective nuclear charge in Bi. This causes contraction in size.

2. (2)

Sol: PH₃ is less basic than NH₃ due to lesser availability of lone pair of electrons. The lone pair of electron is present in spherical s-orbital as compared to directional Pp₃ hybrid orbital in NH₃.

3. (3)

Sol: Reducing agents can reduce $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ to Cr^{3+} (green solution).

4. (4)

Sol: Both statement are correct

5. (3)

Sol: Refer Inert-pair effect.

6. (4)

Sol:

Strength of phosphorus oxy acid depends upon the number of OH groups per P = O

group, more the OH group less will be the electronic withdrawing effect of P = O group. It is the P = O group which induces polarisation and helps in the release of proton from-OH group. $H_3PO_3 > H_3PO_4$

7. (4)

Sol: Metallic oxides are generally basic in nature.

8. (4)

Sol: Melting point ∝heat of atomization ∝ strength of metallic bond

Strength of metallic bond depends on number of mobile electrons per atom and size of atom.

9. (2)

Sol: Has one lone pair of electrons on central atom which they can donate to lewis acid and the order of basicity is:

 $NH_3 > PH_3 > AsH_3 > SbH_3$

10. (2)

Sol: (2) Statement is correct.

11. (1)

Sol: The basic strength of the hydrides of group 15 elements down the group decreases with decrease in the electronegativity of the central atom according to Drago's rule.

12. (4)

Sol: $N \equiv N$ bond dissociation energy is very high, and thus it is state and inert under ordinary conditions.

13. (1)

Sol: The difference of electronegativities between nitrogen (V) and oxygen is least as compared to that of in the other oxides. On moving down the group acidic strength decreases.

14. (3)

Sol: Sb₄O₆ reacts with NaOH forming arsenite as well as HCl forming SbCl₃.

15. (1)

Sol: Nitrogen can't expand its octet due to unavailability of d-orbital.

16. (2)

Sol: S and O-non-metals; Po-metal; Te and Se semi-metals.

17. (3)

Sol: Sulphur has greater tendency for catenation than oxygen.

18. (4)

Sol: Due to decrease in bond dissociation enthalpy from H₂O to H₂Te, reading nature increases.

19. (4)

Sol: All statement are correct.

20. (2)

Sol: Bond dissociation enthalpy decreases down the group with increasing H–E bond length with increasing size of atoms from O to Te.

21. (1)

Sol: Acidic strength: $H_2O < H_2S < H_2Se < H_2Te$.

22. (2)

Sol: As water has H-bonding due to the presence of highly electronegative oxygen but H₂S does not (electronegativity of sulphur is low).

23. (3)

Sol: Factual

24. (1)

Sol: Vanderwaal's forces increase as we move down the group and hydrogen bonding is present in NH₃.

25. (1)

26. (1)

Sol: As non-metallic character of element attached to oxygen atom increases, the difference between the electronegativity values of element and oxygen decreases and the acid character of oxides increases and vice-versa.

27. (1)

Sol: Intermolecular forces between H₂S, H₂Se and H₂Te molecules are purely Van der Waal's force of attraction while in water there is stronger H-bonding between the water molecules. H-bond is stronger than Van der Waal's force of attraction and thus more energy is required for converting H₂O(ℓ) to (H₂O)(g).

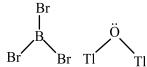
28. (4)

Sol: N and O have ability to form pπ-pπ multiple bonds with it self on account of smaller size of atoms. N - N and 0-0 bond energies are less on account of repulsion between non-bonded pairs of electrons due to smaller size of atoms.
S - S bond energy (265 kJ mol⁻¹) is next to C - C.

29. (4)

Sol: (1) –Bond dissociation energy of F2 is less than that of Cl₂

- (2) –Cl has higher E.A. than fluorine.
- (3) –HF is weaker acid than HCI, due to higher bond energy.


30. (1)

Sol:

- (a) (F); As the size of halogen atom increases crowding on Si atom will increase, hence, tendency of attack of Lewis base decreases.
- (b) (T); M.P. of NH₃ is highest due to intermolecular H-bonding in it.Next lower M.P. will be of SbH₃ followed by AsH₃ due to high mol. wt. of SbH₃.
- (c) (F); M.P. and B.P. of increase from PH₃ to SbH₃ via AsH₃ due to increase in mol. wt. NH₃ does not follow this trend due to inter molecular H-bonding.
- (d) (T); Value of bond moment decreases.

31. (2)

Sol:

Trigonal planar Basic nature

B (OH)₃ Monobasic acid AlCl₃ Dimer form

32. (4)

Sol: a. $(SiH_3)_3$ N $(P\pi$ -d π bond)

b. BF₃ $(p\pi-p\pi \text{ bond})$

c. SiO₂ (sp³-hybridization)

d. B₂H₆ (3 centre 2-electron bond)

33. (4)

Sol: s-block & p-block elements collectively comprise the representative elements. The valence shell electronic configuration of halogen is ns² np⁵ and the last electron enters in p-subshell. Thus, halogens belongs to p-block elements.

34. (2)

Sol: Fact.

35. (3)

Sol: Fluorine has less negative electron gain enthalpy than chlorine.

36. (4)

Sol: Bond length ∞ size of atom

37. (1)

Sol: Fact

38. (4)

Sol: According to their SRP.

39. **(1)**

HF has highest boiling point on account of Sol: intermolecular hydrogen bonding. But from HCl to HI the boiling point show a regular increase due to a corresponding increase in the magnitude of van der Waal's force of attraction as the size of the halogen increases.

40. (4)

Sol: As the size of anion increases the distance between the nucleus and valence shell electrons increases resulting into weak force of attraction between them. This leads to increase in the ease of the donation of electrons in the order $F^- < Cl^- < Br^- < I^-$ Hence I⁻ acts as a strongest reducing agent.

41. **(2)**

Sol: All halogen exhibit –1 oxidation state. However, chlorine, Bromine and Iodine exhibit +1, +3, +5 and +7oxidation state also.

42. **(1)**

Fluorine atom has no d-orbitals in its value shell and therefore can't expand its octet.

43. **(3)**

Sol: $F_2 + 2e^- \rightarrow 2F^ E^{\circ} = +2.87 \text{ V}$

44. **(3)**

Bond length $\propto 1/(bond dissociation)$ Sol: energy) and bond dissociation energy ∞ bond strength.

45. **(3)**

Sol: In March 1962, Neil Bartlett, then at the University of British Columbia, observed the reaction of a noble gas. First, he prepared a red compound which is formulated as O₂⁺ PtF₆⁻. He, then realised the first ionisation enthalpy of that molecular oxygen (1175 kJ mol ⁻¹) was almost identical with that xenon (1170 kJ mol⁻¹). He made efforts to prepare same type of compound with Xe+ PtF6 - by mixing Pt F₆ and Xenon. After this discovery, a number of xenon compounds mainly with most electronegative elements like fluorine and oxygen, have been synthesised.

46. **(2)**

I.E: He > Ne > Ar > Kr > Xe. Sol:

47. **(4)**

Sol: Due to large size of xe.

48.

Sol:
$$F_2 + 2e^- \longrightarrow 2F^ \epsilon^\circ = +2.87 \text{ V}$$
;
 $Cl_2 + 2e^- \longrightarrow 2Cl^ \epsilon^\circ = +1.36 \text{ V}$
 $Br_2 + 2e^- \longrightarrow 2Br^ \epsilon^\circ = +1.09 \text{ V}$;
 $I_2 + 2e^- \longrightarrow 2I^ \epsilon^\circ = +0.54 \text{ V}$

More the value of the SRP, more powerful is the oxidising agent. Hence the order of oxidising power is $F_2 > Cl_2 > Br_2 > I_2$.

49. (3)

Sol: (1) 64 < 99 < 114 < 133 – covalent radius/pm down the group size increases due to addition of new shells.

(2) $515 > 391 > 347 > 305 - \Delta_{hyd}H(X^{-}) \text{ KJ}$ mol^{-1}

Degree of hydration $\propto \frac{1}{\text{size of anion}}$

(3) 158.8 < 242.6 > 192.8 > 1.51 |-Bond dissociation enthalpy | (kJ mol⁻¹) F–F < Cl–Cl on account of large repulsion between non-bonded pairs of electron due to small F-F bond length.

(4) 143 < 199 < 228 < 266 - X - X distance/pm as size of element increases the X-X distance increases.

50. (4)

Sol: (1) As O.N. increases, acidic strength increases.

(2) As non-metallic character increases, acid strength increases

	Oxyacid	No. of	$p\pi-p\pi$	bond
(3)	HClO ₄		3	
	HClO ₃		2	
	HClO ₂		1	
	HClO		0	

(4) All are sp³ hybridised, therefore same percentage s-character.

51. (1)

Sol: As charge dispersion increases, the stability of conjugated base increases and thus acidity increases.

52. (3)

Sol: Fact.

53. (2)

Sol: $Sn^{4+} > In^{+} > Sn > In$

54. (1)

Sol: In general, left to right in a period electronegative increases and top to bottom it decreases.

55. (1)

Sol: TlI₃ exists as Tl+ and I₃⁻ while PbF₄ exists because of F⁻ being very weak reducing agent.

56. (4) Sol:

Element	В	S	P	F
:				
I.E.(kJ	80	100	101	168
mo				
1-				
¹):				

In general as we move from left to right in a period, the ionization enthalpy increases with increasing atomic number. The ionization enthalpy decreases as we move down a group. P (1s², 2s², 3s² 3p³) has a stable half filled electronic configuration than S (1s², 2s², 2p⁶, 3s², 3p⁴). For this reason, ionization enthalpy of P is greater than S.

57. (1)

Sol: Due to the inert pair effect (the reluctance of ns² electrons of outermost shell to participate in bonding) the stability of M²⁺ ions (of group 14 elements) increases as we go down the group.

58. (3)

Sol: Group is elements has stable half-filled configuration

59. (3)

Sol: Additional electrons are repelled more effectively by 2p electrons in F atom than by 3p electrons in Cl atom.

60. (3)

Sol: In p-block elements (i.e. 14th group here), the lower oxidation state becomes more stable on going down the group due to inert pair effect. Thus, Pb⁴⁺ is less stable than Sn4+. This makes the Pb⁴⁺ a stronger oxidising agent. Therefore, the statement-2 is incorrect.

Integer Type Questions (61 to 75)

61. (3)

Sol:

H₃PO₂ = monobasic

; H₃PO₃ = dibasic

: $H_3PO_4 = tribasic$.

one ionisable H^+ two ionisable H^+ three ionisable H^+

62. (2)

Sol:

63. (3)

Sol: (i) (ii) (iii)

 H_2SO_4 oxidises HI to I_2 ., and Al to Al^{+3}

64. (3)

Sol: (i), (ii), (iii) are correct.

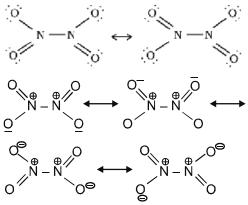
The Ionisation energy of group 15 elements is much large than that of group 14 elements in the corresponding period.

65. (2)

Sol: Density IE_1 ; O > S > Se > Te. Increases from O to Te with increasing atomic number.

66. (2)

Sol: The stability of hydrides decreases from NH₃ to BiH₃ which can be observed from their bond dissociation enthalpy. The correct order is


 $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$.

Property

 $\begin{array}{ccccc} NH_3 & PH_3 & AsH_3 & SbH_3 & BiH_3 \\ \Delta_{diss}H^{\Theta}(E\!-\!H) \, / \, kJ \, \, mol^{-1} & 389 & 322 \, 297 & 255 \end{array}$

Alternate Solution

 N_2O_4 may has four resonating structure but in NCERT only two resonating structure . Resonating structures of N_2O_4 are

67. (5)

Sol: Due to small size of He. It escapes from interstitial spaces/voids of molecular lattice of quinols.

68. (5)

Sol: Incorrect order of bond dissociation energy $F_2 > Cl_2 > Br_2 > I_2$ due to following order of size I > Br > Cl > F.

69. (3)

Sol: (I) They do not form compounds readily as they are chemically inert on account of stable electron configuration.

(II), (III) & (IV) are correct statement.

70. (4)

Sol: (ii), (iii), (v), (vii) are correct.

BiI₅ does not exists because of I⁻ being very strong reducing agent. So it reduces Bi⁵⁺ to Bi³⁺ and forms BiI₃.

71. (2)

Sol: N_2O and NO are neutral oxides.

72. (2)

Sol: When cooled to a few degrees above absolute zero, helium state to behave like a super fluid (a liquid with no viscosity).

73. (6)

Sol: (Except (c))

74. (21)

Sol: (x = 4, y = 4, z = 3)

75. (26)

Sol: (a = 12, b = 20, c = 30)

THE d- AND f- BLOCK ELEMENTS & QUALITATIVE ANALYSIS

Single Option Correct Type Questions (01 to 60)

1. (4)

Sol: VO^{2^+} ; $3d^1$ electron configuration, $\mu_{BM} = \sqrt{3}$ Fe^{2^+} ; $3d^6$ electron configuration, $\mu_{BM} = \sqrt{24}$ E_u^{+3} is more stable than $E_u^{+2} \Rightarrow E_u^{+2}$ is a strong reducing agent.

2. (4)

Sol: The order of basic character of the transition metal monoxide is TiO > VO > CrO > FeO because basic character of oxides decreases with increase in atomic number. Hence, oxides of transitional metals in low oxidation state ie, +2 and +3 are generally basic except Cr_2O_3 .

3. (1)

Sol: This phenomenon is associated with the intervention of the 4f orbitals which must be filled before the 5d series of elements begin. The filling of 4f before 5d orbital results in a regular decrease in atomic radii called Lanthanoid contraction. This is because of poor shielding of one of the 4 f-electrons by another in the sub-shell.

4. (1)

Sol: $CuCl_2.2H_2O$ $Cu^{+2} \longrightarrow 3d^9$ Green and paramagnetic Cu_2Cl_2 $Cu^{+1} \longrightarrow 3d^{10}$ Colourless and diamagnetic CuO Black and basic $ZnCO_3$ Calamine

5. (1)

Sol: a. $NH_4Br + AgNO_3 \rightarrow AgBr + NH_4NO_3$ (Preparation of sensitive film)

b. $C_6H_4(OH)_2 + 2AgBr \rightarrow 2Ag + C_6H_4O_2 +$ 2HBr (Developing of the film)

c. $2\text{Na}_2\text{S}_2\text{O}_3 + \text{AgBr} \rightarrow \text{Na}_3 [\text{Ag}(\text{S}_2\text{O}_3)_2] + 2\text{NaBr}$ (Fixing of the film)

d. AuCl₃ + 3Ag → 3AgCl + Au (Toning Process)

6. (1)

Sol: There is irregular trend in the first ionisation enthalpy of the 3d metals.

Se Ti V Cr Mn Fe Co Ni Cu Zn In kJ/mol:

631 656 650 653 717 762 758 736 745 906

7. (3)

Sol: The lesser number of oxidation states in the begining of series can be due to the presence of smaller number of electrons to lose or share (Sc, Ti). On the other hand, at the extreme right hand side end (Cu, Zn), lesser number of oxidation state is due to large number of d electrons so that only a fewer orbitals are available in which the electron can share with other for higher valence.

8. (1)

Sol: (1) Cr²⁺ is reducing as it involves change from d⁴ to d³, the latter is more stable configuration (t³_{2g}) Mn(III) to Mn(II) is from 3d⁴ to 3d⁵ again 3d⁵ is an extra stable configuration.

- (2) Due to higher CFSE of d⁶ configuration in presence of ligands which more than compensates the 3rd IE.
- (3) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^1 .

Sol:
$$\sqrt{15} = \sqrt{n(n+2)}$$
; $n = 3$, and three unpaired electrons are found when Mn is in Mn⁴⁺ i.e., $3d^3$ 4s⁰ configuration as its metal electron configuration is $[Ar]^{18} 3d^5 4s^2$.

Sol:
$$SO_3^{2-}$$
 reduces KMnO₄ to Mn²⁺ (colourless)
 $5SO_3^{2-} + 2MnO_4^{-} + 6H^{+}$

$$\longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$$

11. (4)

- **Sol:** (1) This activity is ascribed to their ability to adopt multiple oxidation state and to form complexes.
 - (2) Because of having larger number of unpaired electrons in their atoms, they have stronger inter atomic interaction and hence stronger bonding between the atoms.
 - (3) Transition metals like Fe, Co, Ni, Cu etc. form interstitial compounds with elements such as hydrogen, boron, carbon and nitrogen. The small atoms of these nonmetallic elements (H, B, C, N, etc.) get trapped in vacant spaces of the lattices of the transition metal atoms.

Sol:
$$2CrO_4^{2-}$$
 (yellow) + $2H^+$

$$\longrightarrow$$
 Cr₂O₇²⁻ (organge) + H₂O.

Sol: Mn_2O_7 is an acid anhydride of $HMnO_4$ and thus MnO_4^- is oxo-salt of Mn_2O_7 .

$$Mn_2O_7 + H_2O \longrightarrow 2HMnO_4$$
;

$$2HMnO_4 + KOH \longrightarrow 2KMnO_4 + H_2O.$$

Sol:
$$K_2Cr_2O_7 + 4H_2SO_4$$

$$\longrightarrow$$
 K₂SO₄ + Cr₂(SO₄)₃ + 4H₂O + 3O

$$[SO_2 + [O] + H_2O \longrightarrow H_2SO_4 \times 3.$$

$$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3$$
 (Green coloured) + $3H_2O$

Acidified $K_2Cr_2O_7$ is oxidising agent and undergoes reduction to form green coloured solution of Cr_2 (SO₄)₃.

Sol: Pm is a artificial or synthesis element.

Sol: Across lanthanoide series basicity of lanthanoide hydroxide decreases.

17. (1)

Sol: Electronic configuration lanthanoid 4f¹⁻¹⁴ 5d¹ 6s² and electronic configuration of actinoide 5f¹⁻¹⁴ 6d¹, 7s².

Sol:
$${}_{28}\text{Ni(I)} = 3\text{d}^84\text{s}^1; \, {}_{30}\text{Zn(I)} = 3\text{d}^{10}4\text{s}^1; \, {}_{29}\text{Cu(I)} = 3\text{d}^{10}$$

1752 1734 1950 kJ mol⁻¹

Sol:
$$Cr^{3+} + e^{-} \longrightarrow Cr^{2+}$$
, $E^{\Theta} = -0.41$ volts and $Mn^{3+} + e^{-} \longrightarrow Mn^{2+}$, $E^{\Theta} = +1.51$ volts

This shows that Cr^{2+} is unstable and has a tendency to acquire more stable Cr^{3+} state by acting as a reducing agent. On the other hand Mn^{3+} is unstable and is reduced to more stable Mn^{2+} state.

Sol:
$$_{25}\text{Mn}^{2+} - 3\text{d}^5$$
 configuration, n = 5,
so $\mu = \sqrt{5(5+2)} = 5.93$
 $_{26}\text{Fe}^{3+} - 3\text{d}^5$ configuration, n = 5,
so $\mu = \sqrt{5(5+2)} = 5.93$

21. (3)

Sol: (1) In $Cr_2O_7^{2-}$, the valence shell electron configuration of Cr(VI) is $3d^0$. Thus Cr(VI) is diamagnetic but coloured due to the charge transfer spectrum.

(2) In (NH₄)₂ [TiCl₆], the valence shell electron configuration of Ti(IV) is 3d⁰. Thus Ti(IV) is diamagnetic and colourless.

(3) In VOSO₄, the valence shell electron configuration of V(IV) is 3d¹. Thus V(IV) is paramagnetic and blue coloured due to d-d transition.

(4) In K₃[Cu(CN)₄], the valence shell electron configuration of Cu(I) is 3d¹⁰. Thus Cu(I) is diamagnetic and colourless.

22. (2)

Sol: (1) Associated with d-d transition of electron.

(2) The transition metals form the reaction intermediates due to the presence of vacant orbitals or their tendency to form variable oxidation states.

(3) Associated with the number of unpaired electrons participating in metallic bonding.

(4) As $\mu = \sqrt{n(n+2)}$, so it is associated with number of unpaired electron.

Sol: $Cr_2O_7^{2-} + 2H^+ + 4H_2O_2 \longrightarrow 2CrO_5 + 5H_2O$

24. (1)

21La(OH)3 is more basic than Lu(OH)3.

25. (3)

Sol: Assertion: Electron configuration of Cr(g) is [Ar]¹⁸ 3d⁵ 4s¹ and, therefore, it has six unpaired electrons.

Reason: Fully filled orbital is more stable than half filled orbital on account of more number of exchange of electrons resulting into the greater release of exchange energy.

Sol: ${}_{23}V^{2+}(aq) - [Ar]^{18} 3d^3 \longrightarrow Violet colour.$ ${}_{24}Cr^{3+}(aq) - [Ar]^{18} 3d^3 \longrightarrow Violet colour.$ **27.** (1)

Sol: Assertion is incorrect statements but Reason is correct statements.

$$2Cu^+ \longrightarrow Cu^{2+} + Cu^+$$

so, copper (I) compound are unstable in aqueous solution and undergo disproportional.

28. (1)

Sol: Assertion: Correct statement and Reason is correct explanation of Assertion.

Green \rightarrow Mn O_4^{2-} – [Ar]¹⁸ 3d¹ 4S°; there is one unpaired electron, so paramagnetic.

Purple $\rightarrow \operatorname{Mn} O_4^{2-} - [\operatorname{Ar}]^{18} \operatorname{3d}^{\circ} \operatorname{4s}^{\circ}$; here all electrons are paired, so diamagnetic.

29. (1)

Sol: (1) Valence shell electron configuration of Mn²⁺ is 3d⁵, therefore, has the maximum number of unpaired electrons equal to 5 and, therefore, has maximum magnetic moment.

(2) Valence shell electron configuration of Fe²⁺ is 3d⁶, therefore, has the maximum number of unpaired electrons equal to 4.

(3) Valence shell electron configuration of Ti²⁺ is 3d², therefore, has the maximum number of unpaired electrons equal to 2.

(4) Valence shell electron configuration of Cr²⁺ is 3d⁴, therefore, has the maximum number of unpaired electrons equal to 4.

30. (1)

Sol: Cerium Ce₅₈[Xe]4f¹5d¹6s² Its most stable oxidation state is +3 but +4 is also existing.

31. (1)

Sol: $2CrO_4^{2-} + 2H^+ \longrightarrow Cr_2O_7^{2-} + H_2O.$

32. (1)

Sol: Cr⁺ has stable half-filled electronic configuration, [Ar]¹⁸ 3d⁵ 4s⁰. the removal of one more electron from this stable half-filled configuration will require higher energy.

33. (1)

Sol: Cu, Ag, Au group of elements are called coinage metals as these are used in minting coins.

34. (2)

Sol: NO_3^- gives NO_2 with concentrated H_2SO_4 which on passing through water form colourless $HNO_3(\ell)$ and $HNO_2(\ell)$. $Br^- + MnO_2$ on heating with concentrated H_2SO_4 gives Br_2 gas which on passing through water imparts it a reddish brown colour.

35. (4)

Sol: Due to lanthanide contraction there occurs net decrease in size. Only one 0.85Å is smaller one.
 So, radius of Lu₇₁³⁺ will be closest to 0.85Å.

36. (3)

Sol: Cerium can also show the oxidation state of +4 in solution as it leads to a noble gas configuration, from [Xe]⁵⁴4f¹5d¹6s² to [Xe]⁵⁴, after losing four electrons. It is only Ce⁴⁺ which exist in solution among the lanthanides.

37. (3)

Sol: The atomic radii of the second and third transition series are almost the same. This phenomenon is associated with the intervention of the 4f orbitals which must be filled before the 5d series of elements begin. The filling of 4f before 5d orbital results in a regular decrease in atomic radii called Lanthanoid contraction which essentially compensates for the expected increase in atomic size with increasing atomic number. The net result of the lanthanoid contraction is that the second and the third d series exhibit similar radii (e.g., Zr 160 pm, Hf 159 pm).

38. (1)

So, number of unpaired electrons (n) = 2

 \therefore $\mu = \sqrt{n(n+2)} = \sqrt{2(2+2)} = \sqrt{8} \approx 2.84$

39. (2)

Sol: The decrease in the force of attraction exerted by the nucleus on the valency electrons due to presence of electrons in the inner shells is called shielding effect. An 4f orbital is nearer to the nucleus than 5f orbitals. In addition, the 20 electrons of 3d and 4d orbitals contribute the shielding to 4f electron while 44 electrons of 3d, 4d, 5d and 4f contribute the shielding to 5f. Hence shielding of 5f is more than 4f.

40. (2)

Sol: The distance between the nucleus and 5 f orbitals (actinides) is more than the distance between the nucleus and 4f orbitals (lanthanides). Hence the hold of nucleus on valence electron decreases in actinides. For this Statement-2 the actinoids exhibit more number of oxidation states in general.

41. (1)

Sol: There is very small energy difference between 5f and 6d orbitals in actinoids than those of between 4f and 5d orbitals. Hence, electrons present in 5f and 6d orbitals can take part in bonding.

42. (4)

Sol: Availability of 4f electrons do not results in the formation of compounds in +4 state for all the members of the series.

43. (4)

Sol: Lutetium $(71Lu) = [Xe]^{54} 4f^{14}5d^{1}6s^{2}$

44. (3)

Sol: Colour of KMnO₄ is due to charge transfer from O²⁻ (ligand) to Mn (VII) (Central metal ion).

45. (1)

Sol: Pyrolusite on fusion with KOH in air gives green coloured manganate.

 $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_2$ (green) + $2H_2O$

46. (1)

Sol: $2\text{MnO}_4^- + \text{I}^- + \text{H}_2\text{O} \rightarrow 2\text{MnO}_2 + \text{IO}_3^- + 2\text{OH}^-$

47. (3

Sol: CuF_2 contains Cu^{+2} , having d^9 configuration, therefore, there is one unpaired electron which undergoes d-d transition in visible region. CuF_2 in crystalline form is blue in colour.

48. (2)

Sol: Transition metal oxide with highest oxidation states is most acidic in character because of the very less difference in the values of electronegativity between Mn⁷⁺ and O²⁻, and the decreasing order of acidic character is

$${\rm Mn_2O_7}^{+7} > {\rm MnO_2}^{+4} > {\rm Mn_2O_3}^{+3} >> {\rm MnO}$$
 .

49. (2)

Sol: (1) Oxidation state of iron is +3 but it can exceed to a maximum of +6. Oxidation state of cobalt is +3 but it can exceed to a maximum of +4.

(2) Highest oxidation state of Cr in CrO_2Cl_2 is + 6 and highest oxidation state of Mn in MnO_4 is + 7.

(3) Oxidation state of titanium is +2 but it can exceed to a maximum of +4.

Oxidation state of Mn is +4 but it can exceed to a maximum of +7.

(4) Oxidation state of cobalt is +3 but it can exceed to a maximum of +4. Oxidation state of Mn is +7 which is its highest oxidation state.

50. (2)

Sol: S₁: Increased nuclear charge is poorly screened by d-orbital electrons so attraction between nucleus and electron increases. Hence size decreases and density increases.

$$S_2$$
: ${}_{24}Cr^{2+}[Ar]^{18} 3d^4$;

$$\mu_{BM} = \sqrt{n(n+2)} = \sqrt{4(4+2)} = 4.90 \text{ BM}.$$

S₃: Interstitial compounds they have high melting points which are higher than those of pure metals because of strong interatomic bonding.

 S_4 : In alkaline medium it also acts as oxidising agent according to the following reaction;

$$e^- + MnO_4^- \longrightarrow MnO_4^{2-}$$
.

51. (1)

Sol: $X : [K_3 \operatorname{Fe}(CN)_6] Y : \operatorname{Fe} [\operatorname{Fe}(CN)_6]$

52. (1)

Sol: $2KMnO_4 + 3H_2SO_4$

$$\rightarrow 2KHSO_4 + (MnO_3)_2SO_4 + 2H_2O$$

 $(MnO_3)_2SO_4 + H_2O \, \rightarrow \, Mn_2O_7 + H_2SO_4$

$$Mn_2O_7 \xrightarrow{\Delta} 2MnO_2 + \frac{3}{2}O_2$$

53. (2)

Sol: (1) $Cr_2O_7^{2-} + 14H^+ + 6I^- \longrightarrow 2Cr^{3+} + 3I_2 + 7H_2O$.

(2) In acidic solution, actually chromate is converted to dichromate.

$$2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O.$$

(3) $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + 4H_2O + Cr_2O_3$.

(4) $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+$

$$\longrightarrow$$
 6Fe³⁺ + 2Cr³⁺ + 7H₂O.

54. (2)

Sol: High melting point of Cr is attributed to the involvement of greater number of electrons from (n-1) d i.e. 5 in addition to the ns i.e. 1 electrons in the interatomic metallic bonding.

55. (1)

Sol: $NO_2^- + 2I^- + 4CH_3COOH$

$$\rightarrow$$
 I₂ + 2NO↑ + 4 CH₃COO⁻ + 2H₂O

56. (2)

Sol: Mn exhibits all the oxidation states from +2 to +7.

57. (3)

Sol: (1) Cu = 8.95

(2) Ni = 8.91

(3) Sc = 3.0

(4) Zn = 7.14.

Acorss the period atomic volumes decreases upto copper due poor shielding of d-orbital electrons and addition of extra electrons in inner orbitals and then increases in zinc due to interelectronic repulsions in completely filled d- and s-orbitals. Consequently densities increase from Sc to Cu and then decreases in Zn.

58. (1)

Sol: V_2O_5 and Cr_2O_3 are amphoteric in nature. Mn_2O_7 and CrO_3 are acidic in nature. V_2O_3 , CrO and FeO are basic in nature.

59. (4)

Sol: ${}_{29}\text{Cu} = |\text{Ar}|_{18} \ 3d^{10}4s^1$ ${}_{29}\text{Cu}^+ |\text{Ar}|_{18} \ 3d^{10} \ 4s^0$ in Cu^{+1} ion electro

in Cu⁺¹ ion, electronic configuration is 3d¹⁰ (Complete d orbital) so removal of electron recquired higher energy.

60. (3)

Sol: Ion E.C. Number of unpaired electron $\mu = \sqrt{n(n+2)} \ B.M.$

(A) $_{24}\text{Cr}^{+3} |\text{Ar}|_{18} 3\text{d}^3 45^0 \ \ 3 \ \ \sqrt{15}$

(B) $_{26}\text{Fe}^{+2} |\text{Ar}|_{18} 3\text{d}^6 45^0 \quad 4 \quad \sqrt{24}$

(C) ${}_{28}\text{Ni}^{+2} |\text{Ar}|_{18} 3\text{d}^8 45^0 \quad 2 \quad \sqrt{8}$

(D) $_{25}\text{Mn}^{+2} |\text{Ar}|_{18} 3d^5 45^0 5 \sqrt{35}$

Integer Type Questions (61 to 75)

61. (3)

Sol: Most of the trivalent lanthanoid compounds except that of La³⁺ and Lu³⁺ are coloured both in the solid state and in the aqueous solution. The colour of these ions can be attributed due to the presence of unpaired f-electrons.

62. (3)

Sol: (i) $V^{2+} = 3$ unpaired electrons $(V^{2+} = 3)$

 $Cr^{2+} = 4$ unpaired electrons

 $(Cr^{2+} = 4)$ Mn²⁺ = 5 unpaired electrons

 $Mn^{2+} = 5$ unpaired electrons $(Mn^{2+} = 5)$

 $Fe^{2+} = 4$ unpaired electrons

 $(Fe^{2+} = 4)$

Hence the order of paramagnetic behaviour should be

 $V^{2+} < Cr^{2+} = Fe^{2+} < Mn^{2+}$

(ii) ionic size decrease from left to right in same period

(iii) $Co^{3+}/Co^{2+} = 1.97$; $Fe^{3+}/Fe^{2+} = 0.77$; $Cr^{3+}/Cr^{2+} = -0.41$

 Sc^{3+} is highly stable. It does not show +2)

(iv) The oxidation states increases as we go from group 3 to group 7 in same period.

63. (3)

Sol: In Co⁺³ ion, electronic configuration $|Ar|_{18}$ $3d^64s^0$. For octahedral complex 4 unpaired electron get paired and in configuration become t_{2g}^6 eg⁰ and hybridization d^2sp^3 .

Os has maximum VIII oxidation state.

64. (79)

Sol: Gold

65. (22)

Sol: $_{22}\text{Ti} = 3d^2 4s^2$

66. (22)

Sol: ${}_{24}Cr^{6+} - [Ar]^{18} \ 3d^o \ ; \ {}_{22}Ti^{4+} - \{Ar\}^{18} \ 3d^0 \ ; \ {}_{25}Mn^{7+} - [Ar]^{18} \ 3d^0$

67. (4)

Sol: $2\text{MnO}_4^- + 5\text{SO}_3^{-2} + 6\text{H}^+ \longrightarrow 2\text{Mn}^{2+} + 5\text{SO}_4^{2-} + 3\text{ H}_2\text{O}.$

 $\therefore \quad \frac{2}{5} \text{ mole of MnO}_4^- \text{ for one mole SO}_3^{2-}.$

 $4 \text{ mole MnO}_4^- \text{ fes } 10 \text{ mole SO}_3^{-2}$

68. (6)

Sol: Fe₂₆–[Ar] $3d^64s^2$ Fe²⁺(24 electrons) – [Ar] $3d^64s^0$

69. (3)

Sol: $3.87 = \sqrt{n (n+2)}$; n = number of unpaired electrons.

So, n = 3.

70. (3)

Sol: $_{22}\text{Ti} = |Ar|_{18} \ 3d^2 \ 4s^2$ magnetic moment of Ti⁺ⁿ ion is 1.73 BM it means this ion contents one unpaired electron so after removing 3 electron Ti⁺³ ion formed. Ti⁺³ = $|Ar|_{18} \ 3d^1 \ 4s^0$.

71. (9)

Sol: $6KMnO_4 + 10FeC_2O_4 + 24H_2SO_4 \longrightarrow$ $3K_2SO_4 + 6MnSO_4 + 5Fe_2(SO_4)_3 + 20CO_2 +$ $24H_2O.$

 $\therefore \quad \frac{3}{5} \text{ mole of KMnO}_4 \text{ for one mole ferrous}$ oxalate.

10 mole FeC₂O₄ requires 60 mole KMnO₄

15 mole FeC₂O₄ requires $\frac{6}{10} \times 15 = 9$ mole

The acidic gases produced are SO₂ and SO₃

72. (2)

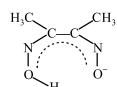
Sol: SO_2 and SO_3 $2FeSO_4 \xrightarrow{\Delta} Fe_2O_3 + SO_2 \uparrow + SO_3 \uparrow$

73. (50)

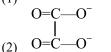
Sol: 24 Carat gold is having % of 100%

74. (3)

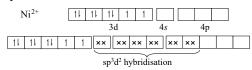
Sol: Cu, Ag and Au are transition metals.


75. (46)

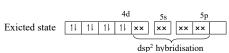
Sol: Pd (Z = 46) has no s-electrons in outer most shell


COORDINATION COMPOUNDS

Single Option Correct Type Questions (01 to 60)



Sol: (1)



- (3) NH₂CH₂CH₂NH₂
- 2. (1)
- **Sol:** NO₂⁻ ion can coordinate through either the nitrogen or the oxygen atoms to a central metal ion.
- 3. (3)
- **Sol:** $NO_2^- \rightarrow N$ -nitro, $-ONO^- \rightarrow O$ -nitro.
- 4. (3)
- Sol: Factual
- 5. (1)
- **Sol:** O.N of Nitrogen NH_3 is -3.
- 6. (2)
- **Sol:** Refer IUPAC Nomenculature.
- 7. (2)
- **Sol:** According to IUPAC nomenclature.
- 8. (3)
- **Sol:** According to IUPAC nomenclature.
- 9. (2)
- Sol: $[Rh (III)(en)_2 (ONO) (SCN)]^+ (NO_3^-)$
- 10. (3)
- **Sol:** (1) 24 + 12 = 36 and 26 + 10 = 36
 - (2) 29 1 + 8 = 36 and 28 + 8 = 36
 - (3) 27-2+12=37 and 28-2+12=38
 - (4) 23 + 1 + 12 = 36 and 27 3 + 12 = 36

- 11. (2)
- **Sol:** sp^3d^2

- 12. (1)
- **Sol:** Since hybridization is dsp² so it is square planar,

- 13. (1)
- Sol: $[Co(NH_3)_5(NO_3)]Br_2 \stackrel{\text{aq.}}{=} [Co(NH_3)_5(NO_3)]^{2+} + 2Br^{-}$

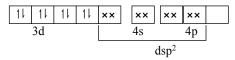
It has two ionisable bromide ion. They will react with AgNO₃ solution to give two mol of yellow precipitate

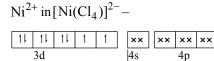
- 14. (1)
- Sol: $[NiCl_4]^{2-}(3d^8)$ is tetrahedral with two unpaired electrons, $\mu_{BM} = 2.83$.

 $[PdCl_4]^{2-}$ $(4d^8)$ is square planar and diamagnetic, $\mu_{BM}=0$.

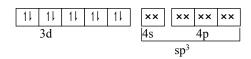
- 15. (4)
- **Sol:** Order of strength of ligands is $CN^- > NH_3 > H_2O > Cl^-$
- 16. (1)
- **Sol:** On the basis of number of unpaired electrons the correct order is P > Q > R > S.

17. (3)


Sol: In $[Fe(CN)_6]^{4-}$; Fe(II) is t_{2g}^6 , eg^0 due to strong ligands.


18. (3)

Sol: The electronic configuration of Ni in


 $[\text{Ni}(\text{CN})_4]^{2\text{--}}, [\text{NiCl}_4]^{2\text{--}} \text{ and } \text{Ni}(\text{CO})_4 \text{ are as following}$

Ni²⁺ in [Ni(CN)₄]²⁻

CO and CN⁻ are strong ligands so they induces pairing of electrons so their complexes are diamagnetic while Cl⁻ is a weak ligand so it does not induce the pairing of electrons so its complex is paramagnetic.

- 19. (4)Stability of complex ∞ Formation of chelate rings.
- 20. (4)

Sol: cis and trans forms both have an element of symmetry. So does not show optical activity.

21. (4)

Sol: (1) No anionic ligand is present in coordination sphere for the exchange with Cl⁻ ions present in ionisation sphere.

(2) No anionic ligand is present in coordination sphere for the exchange with Cl⁻ ions present in ionisation sphere.

- (3) No anionic ligand is present in coordination sphere for the exchange with Cl⁻ ions present in ionisation sphere.
- (4) Br⁻ and SO₄⁻ can exchange their positions between coordination sphere and ionisation sphere. Hence it shows ionization isomerism.

22. (3)

Sol: NO₂⁻ is an ambidentate ligand and can link to central metal ion either through N or O. Hence it show linkage isomerism.

There is exchange of NO₂⁻ and SO₄²⁻ occurs between coordination sphere and ionization sphere. Hence it show ionisation isomerism.

Ma₅b has only one form, therefore, it does not show geometrical isomerism.

Ma₅b has mirror plane, therefore, it does not show optical isomerism.

23. (3)

Sol: Ma₅b will not show geometrical isomerism.

24. (1) Refer IUPAC Nomenculature.

25. (2)

Sol: According to Werner's theory statements (II) and (III) are correct.

- (I) Ligands are connected to the metal ion by coordinate covalent bond (dative bond).
- (II) Secondary valencies i.e. coordination number give rise to stereochemistry of the complexes because of their directional properties.
- (III) Secondary valencies correspond to coordination number i.e. number of σ-bonds between metal ion and ligands.

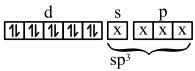
26. (2)

Sol: 1 mole of complex X giving 2 mole of particles will be $[Cr(H_2O)_4Br_2]Cl.H_2O$ i.e $[Cr(H_2O)_4Br_2]^+ + Cl^-$

1 mole of complex Y giving 3 mole of particles will be $[Cr(H_2O)_5Cl]Br_2$ i.e $[Cr(H_2O)_5Cl]^{2+} + 2Br^{-}$

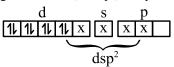
27. (3)

Sol: I, II are optically inactive.

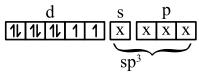

28. (4)

Sol: Tris-(ethylenediamine) cobalt (III) bromide $[Co(en)_3]Br_3$ exhibits optical isomerism:

29. (2)


Sol: In Ni(CO)₄, nickel is sp³-hybridised because in it oxidation state of Ni is zero. So, configuration of

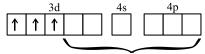
$$_{28}$$
Ni = 1s², 2s²2p⁶, 3s²3p⁶3d⁸, 4s²


(CO is a strong field ligand, hence does pairing of electrons)

In $[Ni(CN)_4]^{2-}$, nickel is present as Ni^{2+} , so its configuration = $1s^2$, $2s^22p^6$, $3s^23p^63d^8$

CN⁻ is strong field ligand, hence it makes Ni²⁺ electrons to be paired up.

In $[NiCl_4]^{2-}$, nickel is present as Ni^{2+} , so its configuration = $1s^2$, $2s^22p^6$, $3s^23p^63d^8$

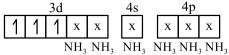


Cl⁻ is a weak field ligand, hence in Ni²⁺ electrons are not paired.

30. (1)

Sol: Magnetic moment = $\sqrt{n (n+2)}$ B.M = 3.83 B.M. (Given).

Hence, n= 3, i.e. there are three unpaired electrons. Thus, we have


In d^2sp^3 hybridisation, the orbitals taking part are $d_{x^2-y^2}$ and d_{z^2} . Hence, unpaired

electrons are present in 3d_{xy}, 3d_{yz}, 3d_{xz}.

31. (3)

Sol: In $[Cr(NH_3)_6]^{3+}$, Cr is present as Cr^{3+} . $Cr^{3+} = [Ar] 3d^3$, $4s^0$

 $[Cr(NH_3)_6]^{3+} = [Ar]$

Since, this complex has three unpaired electrons, excitation of electrons is possible and thus, it is expected that this complex will absorb visible light.

32. (2)

Sol:
$$[Fe(H_2O)_6]^{3+}$$

 $Fe^{+2} = 3d^5 (t_{2g}^{1,1,1} e_g^{1,1})$
so C.F.S.E. is = $[-0.4 \times 3 + 0.6 \times 2] \Delta_0 = 0$

33. (4)

Sol: CoCl₃ 3NH₃ is [Co(NH₃)₃Cl₃] so it will not ionize and does not give Cl⁻ ion test.

34. (1)

Sol: Potassium amminedicyanodioxoperoxochromate(VI)

- (1) Is correct answer
- (2) Is wrong because name of anionic complex ends in ate.
- (3) Is wrong because name of co-ordination sphere is one word.
- (4) Is wrong because oxidation state of Cr and its name both are wrong.

35. (4)

Sol: According to spectro chemical series.

36. (1)

Sol: On charge balancing, $[Co(III)(NH_3)_5(CO_3)]^+ + Cl^-$.

37. (2)

Sol: Assertion: I⁻ ion is a stronger reducing agent than Cl⁻ ion. It reduces Cu²⁺ to Cu⁺ ion.

Reason: [NiCl₂(PPh₃)₂] has tetrahedral geometry (triphenyl phosphine is a bulkier group).

38. (3)

Sol: The stability of complexes increases with increase in the strength of the ligand field. The strength of ligand field according to spectrochemical series increase as given below $I^- < Br^- < SCN^- < Cl^- < S^{2-} < F^- < OH^- < C_2O_4^{2-} < H_2O < NCS^- < edta^{4-} < NH_3 < en < CN^- < CO$

39. (3)

Sol: Only primary valencies out side the coordination sphere are ionised and these react with AgNO₃ to give white precipitate of AgCl.

[Co(NH₃)₅Cl]Cl₂ → [Co(NH₃)₅Cl] + 2Cl⁻

2AgNO₃ → 2AgCl + 2NO₃⁻

40. (4)

Pi- bond, if any between the ligating atom and the central atom / ion are not considered for determination of coordination number.

41. (4)

Sol: Chlorophyll a green pigment in plants contains Mg.

42. (1)

Sol: (1) [Co(en)₂Cl₂]⁺ shows geometrical as well as optical isomerism. (Only cis-form but not trans form as it has one of the symmetry elements).

$$\underbrace{\begin{array}{c} Cl \\ Co^{3+} \end{array}}_{Cl} \underbrace{\begin{array}{c} en \\ \end{array}}_{}$$

- (2) It exists only in one.
- (3) Exist in cis and trans forms only (no optical isomerism because of the presence of the plane of symmetry).
- (4) Exist in cis and trans forms only (no optical isomerism because of the presence of the plane of symmetry).

43. (4)

Sol: (i) Co^{2+} , $3d^7 =$ Cl⁻ is weak field

ligand.

$$(ii) Mn^{2+}, 3d^5$$
 $=$ Cl^- is weak field

ligand.

$$|iii) Fe^{2+}$$
, $3d^6 = CN^-$ is strong field

ligand so compels for pairing of electrons.

44. (1)

Sol:
$$3d^4 \equiv - \sqrt{\frac{}{\frac{4}{4}}}$$

CN⁻ is strong field ligand; so it compels for pairing of electrons to have two d-orbital empty.

$$\mu = \sqrt{n(n+2)} = \sqrt{2(2+2)} = 2.84 \text{ B.M}$$

45. (2)

Sol: If X^- is weak filed then (say Cl^-) $[Ni(Cl)_4]^{2-}$ is tetrahedral (sp³) with two unpaired electrons. If X^- is strong field ligand then (say CN^-), $[Ni(CN)_4]^{2-}$ is square planar (dsp²) with no unpaired electrons. Also given $[NiX_4]^{2-}$ is paramagnetic. So,

46. (4)

Sol: CFSE depends on the relative magnitude of crystal field splitting, Δ_0 and pairing energy and in turns Δ_0 depends upon the field produced by ligand and charge on the metal ion. The order of increasing crystal field strength is $C_2O_4^{3-}$ < $H_2O < NH_3 < CN^-$.

47. (1)

Sol: Mole of CoCl₃ . 6NH₃ =
$$\frac{2.675}{267.5}$$
 = 0.01

AgNO₃ (aq) + Cl⁻ (aq)
$$\longrightarrow$$
 AgCl \downarrow (white)
Mole of AgCl = $\frac{4.305}{143.5}$ = 0.03

0.01 mole of $CoCl_3.6NH_3$ gives 0.03 mole of AgCl

 \therefore 1 mole of CoCl₃ . 6NH₃ ionises to give 3 moles of Cl⁻.

Hence the formula of compound is $[Co(NH_3)_6] Cl_3$.

48. (3

Sol: In case of d³ configuration, the number of unpaired electrons remains 3 whether the ligand is strong field or weak field. The hybridisation scheme can be shown as follow: [Cr(NH₃)₃]³⁺ =

Hence the complex is inner orbital complex as it involves (n-1) d orbitals for hybridisation, $3.93 = \sqrt{n \cdot (n+2)}$; so n=3 (here n is number of unpaired electron(s)).

49. (3)

Sol: [Co(NH₃)₃Cl₃] show facial as well as meridional isomerism. But both contain plane of symmetry.

50. (2)

		L_1	L_2	L_3	L_4	l
Sol:	λ absorbed	red	green	yellow	blue	

.. Increasing order of energy of wavelengths absorbed reflect greater extent of crystal-field splitting, hence higher field strength of the ligand.

Energy: Blue (L_4) > green (L_2) > yellow (L_3) > red (L_1)

 \therefore L₄ > L₂ > L₃ > L₁ in field strength of ligands.

51. (3

Sol: 10 millimoles of Complex or 0.01 mol

$$1.2 \times 10^{22} \text{ ions} = \frac{1.2 \times 10^{22}}{6 \times 10^{23}} \text{ mol or } 0.02 \text{ mol}$$

$$\begin{bmatrix} \text{Co(H}_2\text{O)}_5 \text{Cl} \end{bmatrix} \text{Cl}_2.\text{H}_2\text{O} \xrightarrow{\text{+AgNO}_3(\text{excess})} \rightarrow 2 \text{ AgCl} \downarrow$$

$$0.01 \text{ mol} \qquad 0.02 \text{ mol}$$

52. (1) $\left[\text{Fe(CN)}_6\right]^{3-}$ has one unpaired electron and $\left[\text{FeF}_6\right]^{3-}$ has five unpaired electrons.

53. (2)
Pentacyanomanganate (III) ion.

54. (1)

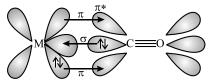
Sol: (1) $Fe^{3+}(d^5) \rightarrow t_{2g}^3$, e_g^2 (symmetrically filled)

(2) $Mn^{2+}(d^5) \rightarrow t_{2g}^5$, e_g^0 (t_{2g} unsymmetrically filled)

(3) $\text{Co}^{3+}(d^6) \rightarrow t_{2g}^4$, e_g^2 (non-unsymmetrical)

(4) $\operatorname{Co}^{2+}(\operatorname{d}^7) \to \operatorname{t}_{2g}^6$, e^1_g (non-symmetrical)

55. (4)


Sol: $\Delta_o \propto \text{CFSE}$ (Crystal field stabilization energy) $\Delta_o \text{ of } [\text{Cr}(\text{H}_2\text{O})_6]^{2+} < \Delta_o \text{ of } [\text{Mo}(\text{H}_2\text{O})_6]^{2+}$ Because here Δ_o depends on Z_{eff} & Z_{eff} of 4d series is more than 3d series.

But Δ_0 of $[Ti(H_2O)_6]^{3+} > \Delta_0$ of $[Ti(H_2O)_6]^{2+}$

56. (2)

57. (1)

Sol: On account of synergic interaction between metal and CO bond order of CO reduces to approximately two and half from three in carbonmonoxide. Thus bond length increases to 1.158 Å.

Synergic Bonding

58. (2)

Sol: As formal negative charge increases on the complex the tendency of π back bonding between metal ion and CO increases and thus the bond order of CO decreases. Hence the CO bond order is lowest in $[V(CO)_6]^-$.

59. (2)

Sol. (I) [Cr(NH₃)₄Cl₂]Cl → Cr⁺³ is d³. It is paramagnetic and it shows cis-trans isomerism.
(II) [Ti(H₂O)₅Cl](NO₃)₂ → Ti⁺³ is d¹. It is paramagnetic and it show ionisation isomerism.
(III) [Pt(en)(NH₃)Cl]NO₃ → Pt⁺² is d⁸. But this complex is square planar and all electron are

complex is square planar and all electron are paired. So it is diamagnatic. It exhibit ionisation isomerism. (IV) $[Co(NH_3)_4(NO_3)_2]NO_3 \rightarrow Co^{+3}$ is d^6 .

Since ligands are strong, so electron are paired. it is diamagnetic. It exhibit cis-trans isomerism.

60. (3)

Sol:
$$S_1$$
: Cr^{3+} $=$ $CFSE = 3 \times -$

 $0.4 = -1.2 \Delta_0$, hybridization is d^2sp^3 (NH₃ is strong field ligand)

S₂: Fe³⁺, 3d⁵ - one unpaired electron after pairing (CN⁻ is stronger field ligand)

∴
$$\mu = \sqrt{1 (1+2)} \approx 1.73 \text{ BM}$$

 S_3 :

$${\stackrel{III}{\rm Fe}}^{-5}_{\rm (CN)_5\,NO]^{2-}$$
 and ${\stackrel{II}{\rm Fe}}^{-5}_{\rm (CN)_5\,NOS^{-1}]^{4-}}$

In reactant and product, the iron have different oxidation state.

Integer Type Questions (61 to 75)

61. (1)

Sol: x + 1 = +2; x = +1

62. (2)

Sol: It exists in cis and trans forms.

63. (4)

Sol: Geometrical isomers (cis and trans) and linkage isomers (–SCN and –NCS).

64. (4)

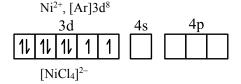
Sol: In complex ion $[CoF_6]^{3-}$, Co is present in + 3 oxidation state.

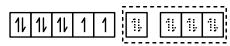
$$_{27}$$
Co = 1s², 2s² 2p⁶, 3s² 3p⁶ 3d⁷, 4s²
Co³⁺ = 1s², 2s² 2p⁶, 3s² 3p⁶ 3d⁶

65. (1)

Sol: $[Cr(H_2O)_4Cl_2]Cl + AgNO_3 \longrightarrow AgCl + [Cr(H_2O)_4Cl_2]NO_3$

$$Mole = 0.01 \times \frac{10}{1000} = 10^{-3}$$


millimole of AgCl = 1


66. (1)

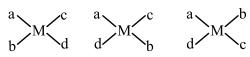
Sol: EDTA has four carboxylate oxygens and two ammine nitrogens as donor atoms. So it is a hexadentate ligand.

67. (3)

Sol: In the paramagnetic and tetrahedral complex [NiCl₄]²⁻, the nickel is in +2 oxidation state and the ion has the electronic configuration 3d⁸. The hybridisation scheme is as shown in figure.

sp³ hybrid orbitals

$$\mu_{B.M.} = \sqrt{n \ (n+2)} = \sqrt{2 \ (2+2)} = \sqrt{8} = 2.82 \ BM$$


2.82 B

68. (3)

Sol: The complex is of the type [Mabcd]

M = metal

a, b, c, d = Monodentate ligands.

3 geometrical isomers

69. (4)

Sol: In the complex [Co(SCN)₄]²⁻ cobalt is in +2 oxidation state. So

SCN- is weak field ligand so,

As it contains three unpaired electrons, so $\mu = \sqrt{3(3+2)} = \sqrt{15} = 3.87$ BM.

70. (4)

Sol: K-[Fe(CN)₆]³⁻ : 3d⁵ electron configuration after pairing of electrons for d²sp³ hybridisation it contains one unapaired electrons.

 $L-[Co(NH_3)_6]^{3+}: 3d^6$ electron configuration, d^2sp^3 , diamagnetic.

 $M-[Co(ox)_3]^{3-}$: $3d^6$ electron configuration, d^2sp^3 , diamagnetic.

 $N-[Ni(H_2O)_6]^{2^+}: 3d^8$ electron configuration, sp^3d^2 , with two unpaired electrons paramagnetic.

 $O-[Pt(CN)_4]^{2-}$: $5d^8$ electron configuration, dsp^2 , diamagnetic.

$$\label{eq:p-Zn(H2O)6} \begin{split} P-[Zn(H_2O)_6]^{2^+} &: 3d^{10} \text{ electron configuration,} \\ sp^3d^2, diamagnetic. \end{split}$$

71. (5)

Sol: According to EAN rule

$$26 - 0 + 2x = 36$$
$$x = 5$$

72. (3)

Sol: $3d^3 = t_{2g}^{1, 1, 1} eg^{0, 0}$

73. (240)

Sol: [CoCl₂(en)₂]Cl, One mole complex contains, one mole of ionizable Cl⁻.

One mole of complex = one mole of Cl⁻

 $\therefore \text{ One mole of AgCl = One mole of}$ 100×2.4

complex =
$$\frac{100 \times 2.4}{1000}$$
 = 00.24 mole

= 240 millimole

74. (2)

Sol: Let the oxidation state of Fe is x 4 + x - 5 - 1 = 0

So, x = 2

75. (6)

Sol: Coordination number of nickel in $\left[\operatorname{Ni}(C_2O_4)_3\right]^{4-}$ is 6 because $C_2O_4^{2-}$ is a bidentate ligand.

HALOALKANES AND HALOARENES

Single Option Correct Type Questions (01 to 60)

1. (4)

Sol: S_N2 reactions occur with inversion of configuration. Therefore; an optically active reactant gives an optically active product whose sign of rotation cannot be predicted.

2. (3)

Sol: Neopentyl bromide undergoes dehydrohalogenation to give alkene even though it has no β-hydrogen atom. This is due to rearrangement of carbocation by E1 mechanism.

CH₃—CH₂—Br
$$\xrightarrow{CH_3}$$
 CH₃—CH₂ $\xrightarrow{CH_2}$ $\xrightarrow{CH_3}$ CH₃—C-CH₂ $\xrightarrow{T; 2. \text{ Me}^{\odot}}$ Shifting CH₃ 1° Carbocation (less stable)

$$\begin{array}{c} CH_3 & CH_3 \\ CH_3-C-CH-CH_3 & OH & CH_3 \\ H & 2-methyl-2-butene \\ 3^{\circ} \ Carbocation \end{array}$$

3. (2)

Sol: Due to resonance C–Cl bond in chlorobenzene does not ionize to give Cl⁻ ion.

4. (2)

Sol:
$$RX + Dry Ag_2O \longrightarrow R-O-R + 2AgX$$

(more stable)

5. (2)

Sol: Ethanol is prevents chloroform from converting into phosgene gas because it float over chloroform and prevent its oxidation.

6. (1)

Sol: Rate of hydrolysis \propto stability of carbocation A < B < C < D

7. (1)

Sol: Reactive for E1 reaction ∝ stability of carbocation

8. (3)

Sol:
$$H_3C \xrightarrow{CH_3} CH_3 \xrightarrow{Alc. KOH} \Delta$$

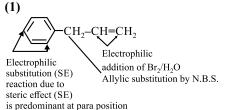
$$CH_3 CH_3 CH_3$$

9. (3)

10. (1)

Sol: Bulky base will form Hofman Product.

11. (4)


Sol: Due to steric hindrance Hofmann product is major product.

12. (4)

Sol: -CN group is converted into -COOH group under given reaction since -COOH group is at C₂ that means one of the chlorine atom is present at C₂ carbon and always when two - COOH groups are at same carbon atom subsequent heating loses CO₂ so both chlorine atoms are at same C₂ position.

13.

Sol:

14. (2)

Sol: E2 elimination

15. (4)

Sol: NH₃ (Protic solvent) helps in formation of carbocation.

16. (2)

Sol: Reactivity of R-X: $3^{\circ} > 2^{\circ} > 1^{\circ}$

17. (4)

Sol: $S_N 2$ reaction is a stereopecific reaction so gives only a single steroisomer.

18. (4)

Sol: Step-1 and 2 are S_N2 reactions, so x and y are identical compounds.

19. (3)

Sol:
$$CH_2CH_3$$
 CH_3CH_3 CH_3-C_4 CH_2-CH_3 CH_3-C_4 CH_3-C_4 CH_3 CH_3 CH_3

Racemic mixture

20. (3)

Sol:

$$Br \longrightarrow CH_2OH \longrightarrow CH_2O$$

21. (1)

Sol:

22. (4)

23. (4)

Sol: E1 involves carbocation intermediate. It has no stereospecificity.

24. (1)

Sol: More Stable.

25. (2)

Sol: Ethanol is polar and it has acidic hydrogen.

26. (1)

Sol: On going left to right in period nucleophilicity decreases.

27. (1)

Sol: Acetate ion is more stable than phenoxide ion.

28. (1)

Sol: Sulphur belongs to IIIrd period so it has maximum nucleophilicity.

29. (4)

Sol: On going top to bottom in group nucleophilicity increases.

30. (2)

Sol: Leaving group ability ∞ stability of anion.

31. (4

Sol: Strength of nucleophile generally increases on going down a group in the periodic table, because polarising strength of anion increases.

32. (4)

Sol: Poor base are good leaving group. Leaving group ability: $F^- < Cl^- < Br^- < l^-$.

33. (1)

Sol: If the nucleopilic atom or the centre is same, nucleophilicity parallels basicity, i.e., more basic the species stronger is the nucleophile.

 $CH_3O^- > HO^- > PhO^- > AcO^-$

Here, the nucleophilic atom i.e. O is the same in all these species, This order can be easily explained on the general concept that a weaker acid has a stronger conjugate base.

34. (3)

Sol: Kharasch effect.

35. (3)

Sol: Chlorine withdraws electrons through inductive effect and release electrons through resonance.

36. (2)

Sol:
$$CH_3 - CH_2 - CH_2 - CI + AlCl_3 \longrightarrow AlCl_4^{\Theta} + CH_3 - CH_2 - \overset{\oplus}{CH_3} \xrightarrow{CH_3 - CH_3 - CH_3} CH_3 - CH_3 - CH_3$$

$$+CH_{3}-\overset{\oplus}{C}H \longrightarrow \begin{array}{c} CH(CH_{3})_{2} \\ +H^{\oplus} \end{array}$$

$$H^{\oplus} + AlCl_4^{\Theta} \longrightarrow AlCl_3 + HCl$$

37. (2)

Sol: Lindane is another name of B.H.C

38. (1)

Sol: Reactivity of H-atom $3^{\circ}H > 2^{\circ}H > 1^{\circ}H$.

39. (2)

Sol: Halogenation of alkanes is an example of free radical substitution reaction

40. (2)

Sol:
$$CH_4 \xrightarrow{hv} CH_3Cl \xrightarrow{hv/Cl_2} CH_3Cl_2$$

$$\xrightarrow{hv/Cl_2} CHCl_3 \xrightarrow{hv/Cl_2} CCl_4$$

41. (3)

Sol:
$$\xrightarrow{\operatorname{Br}_2}$$
 $\xrightarrow{\operatorname{Br}}$ + $\xrightarrow{\operatorname{Br}}$

42. (3)

Sol: For photochemical bromination reactivity of hydrogen atom is $3^{\circ}H > 2^{\circ}H > 1^{\circ}H$.

$$CH_3$$
 CH_2
 Br_y/hv
 CH_3
 CH_3

43. (3)

Sol: lodination of an alkane is carried out in presence of HNO₃ or HIO₃

44. (4)

Sol:

$$(1) CH_{3}-CH \xrightarrow{Br_{2}} CH_{3}-C-Br+CH_{3}-CH-CH_{2}-Br$$

$$CH_{3} CH_{3} CH_{3} CH_{3}$$

$$Major Minor$$

$$3^{\circ} Alkyl halides$$

(2)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 $CH_$

(3)

$$(CH_3)_2CH-CH=CH_2 \xrightarrow{H^{\bigoplus}} CH_3-CH-CH-CH_3 \xrightarrow{1.2 H^{\bigoplus}} CH_3 \xrightarrow{C} -CH_2-CH_2$$

$$CH_3 \xrightarrow{Br} CH_3 \xrightarrow{C} -CH_2-CH_3$$

$$3^{\circ} \text{ Alkyl halides } CH_3-C-CH_2-CH_3 \xrightarrow{Br^{\bigoplus}} CH_3$$

45. (1)

Sol: HCl undergoes electrophilic addition even in the presence of peroxides.

46. (2)

Sol:
$$CH_2=CH - CH_2-CH = CH_2 \xrightarrow{NBS} CH_2 = CH - CH - CH = CH_2 \longleftrightarrow CH_2 = CH - CH$$

$$CH = CH - CH_2 CH_2 = CH - CH = CH - CH_2$$

47. (2

Sol: Bromination is anti-addition.

48. (3)

Sol:
$$CH_3 - C \equiv C - CH_3 \xrightarrow{(1) H_2/Pd/CaCO_3} \xrightarrow{Lindlar's}$$

$$\xrightarrow{H_3C} C = C \xrightarrow{CH_3} \xrightarrow{Anti \text{ addition}} (d\ell) - 2, 3$$

dibromo butane

49. (2)

Sol: 1-Butyne can be converted into 1-bromo-1-butene by antimarkownikoff, Addition of H-Br in presence of peroxide.

50. (1)

Sol: -NO₂ group is meta directing

Sol:
$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{Br_2, ho}$$
 $CH_3 - CH_2 - CH_2 - CH_3 + Br_2 - CH_2 - CH_2 - CH_3$
Br
1-bromobutane
(equimolar ratio)

53. (2)

Sol: Bromination of alkene is an anti-addition

54. (3)

Sol:
$$(P) \rightarrow c, (Q) \rightarrow b, (R) \rightarrow d, (S) \rightarrow a$$

55. (2)

Sol:
$$CH_2=CH-CH=CH_2 \xrightarrow{HBr} CH_2 (Br)$$

CH=CHCH₃ + CH₃ CH(Br)-CH=CH₂

1, 4-addition

1, 2-addition

Therefore, 1-bromo-2-butene will be the main product under themodynamically controlled conditions.

56. (4)

Sol:
$$CH_3 - C - CH_2 CH_3 + Br_2 \xrightarrow{hv}$$
 CH_3

$$CH_{3} - C - CH_{2} - CH_{3}$$
 $CH_{3} - CH_{3}$
 CH_{3}
 CH_{3}
 CH_{3}

2-Bromo-2-methyl butane

57. (2)

Sol:

$$\begin{array}{ccc} CH_3 & CH_3 \\ & & & \\ H_3C-CH-CH-CH_3 & & & \\ \hline \end{array} \longrightarrow \begin{array}{c} Cl_2/h\nu \end{array} \longrightarrow \hspace{-1cm} \rightarrow \hspace{-1cm}$$

58. (1)

Sol:
$$CH_3 \rightarrow CH_3 \rightarrow CH_3 \rightarrow CH_3$$

59. (1)

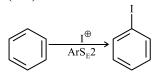
Sol:
$$CH_3 - C = CH \xrightarrow{H^+} CH_3 - \overset{\bigoplus}{C} = CH_2 \xrightarrow{Br^{\Theta}} CH_3 - \overset{\bigoplus}{C} - CH_3 \xrightarrow{Br^{\Theta}} CH_3 - \overset{\bigoplus}{C} - CH_3 \xrightarrow{Br} CH_3 - \overset{\bigoplus}{C} - CH_3 - \overset{\bigoplus}{$$

60. (2)

Sol: Addition of bromine to an alkene is an anti addition and symmetrical trans alkene on anti addition forms a meso compound.

Integer Type Questions (61 to 75)

62. (3)


Sol: Electron deficient species is called an electrophile.

(iii), (iv), (v)

63. (67)

Sol: $\frac{12}{18} \times 100 = 66.6 \%$

64. (204)

65. (2)

Sol:
$$\begin{array}{c}
Br \\
(i) Cl_2/Fe \\
SO_3H
\end{array}$$

$$\begin{array}{c}
Br \\
(ii) H_2O/\Delta \\
-H_2SO_4
\end{array}$$

$$\begin{array}{c}
Cl \\
(iii) H_2O/\Delta \\
-H_2SO_4
\end{array}$$

66. (5)

67. (4)

Sol:
$$CH_3 - CH_2 - C \equiv C - H \xrightarrow{HBr}$$

$$CH_3 - CH_2 - C = CH_2$$

$$Br$$

$$\xrightarrow{HBr}$$

$$CH_3 - CH_2 - C - CH_3$$

$$Br$$

$$CH_3 - CH_2 - C - CH_3$$

$$Br$$

$$(2, 2-dibromobutane)$$

$$p = 2, q = 2$$

68. (2)

Sol:

69. (4)

Sol: 3-methyl pent-2-ene

Total stereo centers = 2, Total stereo isomers = 4

70. (4)

Sol: In this step, two radicals react together in a way such that chain can no longer be propagated.

71. (4)

Sol: (ii), (iii), (v), (vi) have no any symmetry hence they are chiral.

72. (3)

Sol: (oct-2-ene, oct-3-ene, oct-4-ene)

73. (4)

Sol: CH_3 -HC=CH- CH_2 -CH=CH-COOHhas 2-stereocentre The no. of geometrical isomers = 2^2 = 4.

74. (4)

Sol:
$$CH_3 - \overset{*}{CH} - CH \overset{*}{=} CH - CH_3$$

OH

Number of stereocentres = 2 so total number of stereoisomers = $2^2 = 4$

All 4 isomers are optically active.

75. (7)

Sol:

cis

$$Me$$
 H
 Me
 $trans(d & \ell)$
 $(cis & trans)$

ALCOHOLS, PHENOLS AND ETHERS

Single Option Correct Type Questions (01 to 60)

1. (2)

Sol: LiAlH₄ reduces —COO—, —COCl and > C=O groups. While NaBH₄ reduces > C=O and —COCl group not —COO— group.

2. (1)

Sol: LiAlH₄ cannot reduce isolated carbon-carbon double bond even it is present in conjugation with carbonyl group.

3. (4)

Sol: HBO involves syn addition

4. (4)

Sol: $CH_3 CH_2CH - CH_3 \xrightarrow{Conc.H_2SO_4} \xrightarrow{\Delta}$ OH $CH_3CH = CHCH_3 \xrightarrow{O_3/Zn} 2CH_3CHO$

5. (4)

Sol: C₃H₆O does not give a precipitate with 2, 4 – dinitrophenyl hydrazine. So, it can't be aldehyde and ketone. C₃H₆O also does not react with Sodium metal. So, it can't unsaturated alcohol also. Hence, C₃H₆O must be

$$CH_2 = CH - OCH_3$$

6. (3)

7. (2)

Sol: MnO₂ oxidies only allylic alcohol with the protection of double bond. While PCC in CH₂Cl₂ oxidises allylic alcohol as well as non-allylic alcohol with the protection of double bond.

8. (1)

Sol: C₆H₆OH is phenol because it gives violet colour with neutral FeCl₃ and produces no effervescence with NaHCO₃.

9. (2)

Sol: Tertiary alkyl bromide gives alkene as a major product in presence of sodium ethoxide because tertiary carbocation readily gives elimination reaction and converted into most stable alkene.

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{I} \\ \operatorname{CH_3} - \operatorname{C--Br} + \operatorname{CH_3CH_2ONa} \\ \operatorname{I} \\ \operatorname{CH_3} \end{array}$$

$$CH_3$$
 \downarrow
 CH_3
 $CH_$

10. (1)

Sol: Major product is decided by E₁ mechanism

11. (2)

Sol: Migration of methyl occurs to form major product

12. (4)

Sol: According to stability of carbocation.

13. (2)

Sol: Dehydrated product will be conjugated with – C = O and carbocation is also more stable.

$$\begin{array}{c}
O \\
H \\
OH
\end{array}$$

$$\xrightarrow{-H_2O}$$

14. (1)

Sol: $R - OH \xrightarrow{H^{\oplus}} R - OH_2$ This step is initiation step.

15. (1)

Sol: will most readily be dehydrated to give conjugated alkene.

16. (3)

Sol:
$$Br \xrightarrow{EtOH} Br$$

 $\xrightarrow{\text{NaNH}_2} \text{CH}_3 - \text{CH}_2 - \text{C} \equiv \text{CH}$ (Both steps are E2 elimation reaction)

17. (1)

Sol:
$$\xrightarrow{I_{2O}} \xrightarrow{D} \xrightarrow{OH_2} \xrightarrow{OH}$$

18. (2) Due to rearrangement.

19. (3)

Sol:
$$Ph$$
 CH_3
 $Et \xrightarrow{H-Br} Ph$
 OH_2
 CH_3
 $Et \xrightarrow{OH_2}$

(Chiral carbon atom)

$$Ph \xrightarrow{\bigoplus_{\text{CH}_3}} Ph \xrightarrow{\text{CH}_3} Et$$

$$Et \xrightarrow{\text{Br}} \text{Br}$$

$$(\pm) \text{ Racemic Mixture}$$

20. (2)

Sol: CH₃-CH₂-CH₂-CH₂-OH

$$\xrightarrow{\text{HBr}}$$
 CH₃-CH₂-CH₂-CH₂-Br

21. (2)

Sol:
$$H \xrightarrow{CH_3} OH \xrightarrow{PCl_3} Cl \xrightarrow{CH_3} H$$
 $C_2H_5 C_2H_5$

Product is R-2-Chlorobutane

22. (4)

Sol: $OH \longrightarrow O$ $NaNH_2 \longrightarrow CI \longrightarrow O$

$$\xrightarrow{\text{Intramolecular } S_N 2} \bigcirc$$

23. (2)

Sol:
$$CH_3 - CH_2 - CH - CH_3$$

$$CI$$

$$SOCI_2 \times CH_3 = CH_3 + CH_3$$

OH

It is S_Ni mech so retenion of configuration.

24. (1)

Sol: $CH_3-CH_2-CH_2-O-CH_2-CH_3 \xrightarrow{HCI/\Delta}$ $CH_3-CH_2-CH_2-OH+CH_3-CH_2-CI$

25. (2)

Sol: Due to formation of stable carbocation →

(Tropyllium cation)

26. (3)

Sol: Major product is formed by more stable carbocation

27. (3)

Sol:
$$CH_3 - CH - CH_2 + (CH_3)_2 CHMgBr$$

$$\xrightarrow{(i) E_2O} CH_3 - CH - CH_2 - CH \xrightarrow{CH_3} CH_3$$

$$OH$$

28. (1)

Sol: (A)
$$OH \xrightarrow{H^{\oplus}} OH$$

$$CH_{2}OH \qquad CH_{2}OH_{2}$$

$$\xrightarrow{-H_{2}O} OH \xrightarrow{B_{1}^{\ominus}} OH$$

$$CH_{2}-Br$$

(B)
$$OCH_3$$
 OCH_3 OCH_3

29. (1)

Sol:
$$CH_2-O$$
 Br_2/Fe

$$CH_2-O$$
 Br $Conc. HBr$

$$CH_2-Br +HO$$
 Br

30. (3)

Sol:
$$CH_3 - C - CH_2 \xrightarrow{H_2O} \xrightarrow{H_2O}$$

31. (4)

32. (4)

33. (2)

Sol: 3° alcohol react faster with HCl and anhydrous ZnCl₂ since it forms more stable carbocation intermediate.

34. (2)

Sol: The reaction of alcohol with lucas reagent is mostly an S_N1 reaction and the rate of reaction is directly proportional to the carbocation stability formed in the reaction, since 3° R–OH forms 3° carbocation hence it will react fastest.

35. (2)

$$\xrightarrow{\text{CH}_3\text{I}} \xrightarrow{\text{O-Me}} \xrightarrow{\text{O-Me}}$$

Sol:
$$CH_3 - C - CH_3 \xrightarrow{KOH (aq)} CH_3 \xrightarrow{C} C - CH_3$$

$$CI \qquad O$$

$$CH_3 \longrightarrow CH_3 \longrightarrow$$

with Lucas reagent.

Sol:
$$OH \xrightarrow{\text{aq NaOH}} OH$$

$$\xrightarrow{\text{CH}_3-1} \xrightarrow{\text{CCH}_3} \text{OCH}_3$$

Sol.
$$C_5H_{12}O_4 \xrightarrow{CH_3MgBr} 4CH_4 \uparrow$$

It means compound (X) contains 4 acidic hydrogen.

41. (1)

Sol: Major product is 3° alcohol formed by reaction of G.R. on ketone

Sol:
$$CH_3-C_-H$$

$$\xrightarrow{PhMgBr} CH_3-CH$$

$$\xrightarrow{Ph} OH$$

$$\xrightarrow{H_2O} CH_3-CH-Ph+Mg(OH)Br$$

$$(d+1)$$

43. (2)

Sol: Based on general reaction of aldehydes & ketones.

45. (1)

Sol: Based on general reaction of G.R.

Sol:
$$CH-C-O-CH_2CH_3 \xrightarrow{CH_3MgBr} CH_3-C-OEt$$
 $O OMgBr$

$$\xrightarrow{\text{CH}_3\text{MgBr}} \text{CH}_3 \xrightarrow{\text{CH}_3} \xrightarrow{\text{H}_3\text{O}^+} \text{CH}_3 \xrightarrow{\text{CH}_3} \xrightarrow{\text{CH}_3}$$

Sol:
$$CH_3$$
— C — Br — CH_3 MgI \longrightarrow CH_3 — C — Br
 O
OMgI
$$CH_3$$

$$CH_$$

2-Methyl-2-propanol

Sol: HCHO with GR always gives 1° alcohol

(2)
$$C_6H_5MgBr \xrightarrow{H_3O^+} C_6H_6 + Mg \xrightarrow{Br}$$

(3)
$$N_2Cl$$
 OH
$$M_2Cl$$
 OH
$$M_2Cl$$
 OH
$$M_2Cl$$
 OH

CH₃-C-H

Sol:
$$CH_3-CH=CH_2\xrightarrow{H_3O_4} O=O$$

$$CH_3 CH_3$$

$$CH_3-C-O-OH CH_3-C-O-OH_2$$
(i) Migration of – PH
(ii) H_2O^{\oplus}

51. (2)

Sol. If bromine in acetic acid is used, bromination takes place without decarboxylation.

$$\begin{array}{c}
OCH_3 & OCH_3 \\
\hline
OCH_3 & OCH_3
\end{array}$$

$$CH_3COOH$$

$$\begin{array}{c}
OCH_3 \\
\hline
OCH_3
\end{array}$$

52. (4)

Sol: Salicylic acid undergoes decarboxylation with the formation of 2,4,6-tribromophenol when treated with bromine water. The displacement of carboxyl group occurs only when the reaction is carried out in aqueous solution.

$$\xrightarrow{\text{H}_2\text{O}} \text{Br} \xrightarrow{\text{Br}} \text{+ 3HBr}$$

$$\text{CH}_3$$

Sol:
$$\frac{\text{OH}}{\text{(ii) CHCl}_3/\text{NaOH}/\Delta}$$

$$(X) \xrightarrow{OH} \xrightarrow{Br_2/Fe} \xrightarrow{Me} \xrightarrow{OH} \xrightarrow{CHO}$$

Attack will take place on the ring which is more electron rich. Benzene with -OH group attached is more electron rich.

Sol:
$$\langle O \rangle$$
 SO₃Na \xrightarrow{NaOH} $\langle O \rangle$ ONa $\xrightarrow{CH_3I}$

$$\bigcirc \longrightarrow OCH_3 \xrightarrow{HI} CH_3 - I + C_6H_5OH$$

ALCOHOLS, PHENOLS AND ETHERS

PhOH+CH₃COCH₃ ←

56. (4)
OH
OH
NO₂

$$|X|$$
 $|X|$
 $|X$

[Low B.P. due to intramolecular H-bonding]

57. (4)
OH
Sol:
$$\begin{array}{c}
\text{OH} \\
& \text{NaOH}/\Delta \text{ 2. H}^{+} \\
& \text{Reimer-Tiemann Reaction}
\end{array}$$

$$(x) \qquad COOH \qquad COOH \qquad COOH \qquad (pKa = 2.98) \qquad (y) \qquad (pKa = 4.58)$$

(Ka) = x> y (Carboxylate anion stabilized By H-bonding)

(Sol.) = y > z (Intermolecular H-bonding in y) (Vol.) = x > y (Intramolecular H-bonding in x) (MP) = y > x (More symmetrical structure of y)

58. (1)

Sol:
$$H_3C$$
 CH_3
 OH
 CH_3
 $CH_3 - CH = \overset{*}{C}H_3$

 $Q - CH_2 - CH = \mathring{C}H_2$

59. (3)

Sol: It is 2, 4, 6-trinitrophenol

60. (2)

Sol.
$$OH$$

$$Br_2$$

$$(excess)$$

$$Br$$

$$Br$$

$$Br$$

It is EAS activating ring

Integer Type Questions (61 to 75)

61. (60)

Sol. Number of millimoles of alcohol

$$= \frac{1.12}{22.4 \,\text{ml/m mole}}$$

molecular weight of alcohol

$$= \frac{\text{Wt.of alcohol(mg)}}{\text{No. of milli moles of alcohol}}$$

$$=\frac{3}{1.12/22.4}=60$$

62. (3)

Sol. CH₃MgBr, C₂H₅MgBr, Me₂CHMgBr

63. (3)

Sol.
$$(R+S)$$
 OH CH_3

64. (5)

Sol:

$$\rightarrow$$
 OH , OH , OH

$$\bigcirc$$
OH , \bigcirc OH

$$Q = CH_3$$

[M.F. C_6H_{10} M.W. $72 + 10 = 82$]

[Molecular Weights (P - Q)

$$= 114 - 82 = 32$$

Molecular mass [W] = 234N = 234/3 = 78

Sol:
$$H_3C$$
 OH $\xrightarrow{H^+\atop -H_2O}$ H_3C CH_3

 $H_3\dot{C}$ OH $-H_2O$ Cis-Butane-2 (1)

$$+ \underbrace{\overset{CH_3}{\longleftarrow}}_{CH_3} + \underbrace{\overset{CH_3}{\longleftarrow}}_{CH_2}$$

Trans-Butane-2 Butane-1
(2) (3)
Major

In [F] order of quantity of alkene 2 > 1 > 3.

These on addition with Br_2 / CCl_4 to give their addition products which have $C_4H_8Br_2$ as molecular formula

These five products are

ALCOHOLS, PHENOLS AND ETHERS

$$(2) CH_{3} - CH - CH - CH_{3}(dI)$$

$$(3) BrH_{2}C - CH - CH_{2} - CH_{3}(dI)$$

$$Br$$

71. (88)

Sol: $ROH+CH_3MgX \rightarrow CH_4+ROMgX$

Let molecular mass of alcohol is M

$$\frac{56}{22400} = \frac{0.22}{M}$$
$$M = \frac{22400 \times 0.22}{56} = 88$$

72. (3)

Sol:

73. (3)

Sol: Ketone and esters reacts with Grignard reagent to give tertiary alcohols and aldehyde reacts with Grignard to form secondary alcohols. The reaction with formaldehyde will produce primary alcohol

74. (88)

$$\xrightarrow{\text{LiAlH}_4}$$
 2CH₃-CH₂-OH

Molecular formula = $C_4H_8O_2$

Molecular weight = 88

75. (5)

Sol:
$$\frac{\text{conc. H}_2\text{SO}_4}{\Delta} + (d + \ell)$$

$$(E + Z)$$

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

Single Option Correct Type Questions (01 to 60)

1. (4)

Sol:
$$CH_3$$
 CrO_3 $COOH$ $COOH$ $COOH$ $COOH$

2. (3)

Sol: X is
$$\bigcup_{O}$$
 \bigcup_{O} \bigcup_{O} COOH \bigcup_{O} COOH \bigcup_{O} \bigcup_{O} COOH \bigcup_{O} $\bigcup_{$

3. (1)

Sol: b. $p \propto$ extent of intermolecular H-bonding.

4. (3)

Sol: Tollen's reagent gives black precipitate with aldehydes

5. (1)

Sol:
$$CH \equiv CH \xrightarrow{HgSO_4} CH_3 - CHO$$

$$\xrightarrow{CH_3MgBr} CH_3 - CH - CH_3$$

$$OH$$

$$\xrightarrow{RedP/Br_2} CH_3 - CH - CH_3$$

6. (3)

Sol: Reaction I:

$$CH_3$$
 CH_3 $Br_2 (1.0 \text{ mol})$
 $Na^{\oplus}OH^{\ominus}$

(In basic medium complete haloform reaction takes place since the rate of reaction increases with each α -halogenation)

Reaction II:

$$CH_3$$
 CH_3 Br_2 (1.0 mol) CH_3 CH_2Br

(In acidic medium monohalogenation takes place with 1-mol of halogen)

7. (1)

product has three stereoisomers \longrightarrow d + ℓ + meso and product mixture is optically inactive.

9. (3)

Sol: 1-propanol & 2-propanol can be distinguished by the reagents Cu/Δ & Fehling solution Cu converts 1-propanol into propanal & 2-propanol into acetone which are easily distinguished by Fehling solution.

$$\text{CH}_{3} \text{-} \text{CH}_{2} \text{-} \text{CH}_{2} \text{OH} \xrightarrow{\text{Cu}} \text{heat } 300^{\circ} \text{C} \xrightarrow{\text{heat } 300^{\circ} \text{C}}$$

$$\text{CH}_3\text{-CH}_2\text{-CHO} \xrightarrow{\quad \text{Fehling Solution} \quad} \text{Cu}_2\text{O} \downarrow \\ \text{red ppt}$$

$$\text{CH}_{3} \text{-} \text{CHOH - CH}_{3} \xrightarrow{\text{Cu}} \text{heat } 300^{\circ}\text{C}$$

$$CH_3 - CO - CH_3 \xrightarrow{\text{Fehling Solution}} No reaction$$

10. (3)

Sol:
$$CH_3$$
- CH - OH \xrightarrow{Cu} CH_3 - C - CH_3

11. (2)

Sol: Aldehydes and ketones having atleast one α -H, give aldol condensation.

12. (1)

Sol: It is aldol condensation reaction and base will break C–H bond not C–D bond, as we know that C–D bond is stronger than C–H bond.

14. (3

Sol: CH₃CHO have α-hydrogen. So, it will not give Cannizaro reaction.

15. (2)

16. (1)

Sol: Compound containing chiral carbon with carbonyl group $\begin{pmatrix} O \\ \parallel \\ -C-CH. \end{pmatrix}$

17. (2)

Sol: Compound containing — C—CH₃ group give iodoform test and compound containing carbonyl group gives 2, 4 - DNP derivative.

18. (4)

Sol: Acetic acid do not gives tollen's test

19. (3)

Sol: Aldehydes give silver mirror test but ketones do not.

Sol:
$$C_2H_5Br \xrightarrow{Alc.KOH} CH_2 = CH_2$$

$$\xrightarrow{Br_2} CCl_4 CCl_4 CCl_4 CCOOH$$

$$\xrightarrow{H_3O^+} CH_2 - CH_2 COOH$$

$$\xrightarrow{COOH} COOH$$

21. (3)

Sol: Aromatic aldehyde do not give Fehling solution test.

22. (1)

Sol: α -halogenation reaction [α -H must present].

23. (2)

Sol:
$$COO'NH_4^+$$

$$COO'NH_4^+$$

$$COO'NH_4^+$$

$$-H_2O$$

$$CONH_2$$

$$P_2O_5$$

$$CN$$

24. (2)

Sol:
$$CH_3 \xrightarrow{(i) O_3} C-CH_3$$

$$C-CH_3 \xrightarrow{(ii) Zn/H_2O} C$$

$$C \xrightarrow{C} C$$

$$C-H$$
 OH
 $C-CH_3$

25. (3)
Sol:
$$CH-CH_3 \xrightarrow{(1) I_2/NaOH} PhCOOH+CHI_3 \xrightarrow{(2) H_2O/H^+} PhCOOH+CHI_3 \xrightarrow{(2) H_2O/H^+} PhCOOH+CHI_3 \xrightarrow{(2) H_2O/H^+} PhCOOH+CHI_3 \xrightarrow{(3) I_2/NaOH} Ph-C-CI_1$$

26. (3)

27. (1)

Sol: Rate of esterification \propto electrophilicity of > C = O groups in acid.

28. (1)

Sol: Less hindered C = 0 group oxidised in cross Cannizzaro reaction.

29. (2)

Sol: Iodoform test is given by CH.—C— group.

30. (1)

Sol: $PhCHO \xrightarrow{1 \text{ NaOH}} PhCH_2OH + PhCOOH$

31. (1)

Sol: Assertion is correct and reason is the correct explanation of assertion

32. (1)

Sol: I - Q; II - P; III - S; IV - R

33. (2

Sol: I - P; II - S; III - P; IV - Q

34. (4)

Sol: Benzaldehyde undergoes disproportionation with 50% NaOH to given benzyl alcohol and sodium benzoate

 $C_6H_6CHO \xrightarrow{50\% \text{ NaOH}} C_6H_5CH_2OH + C_6H_5COONa$

35. (3)

Sol:
$$O + HN \xrightarrow{CH_3} H^{\bigoplus} \longrightarrow N \xrightarrow{CH_3} CH_3$$
 (enamine)

36. (1)

Sol:
$$CH_3CH_2OH \xrightarrow{Red P} CH_3CH_2I \xrightarrow{Mg} CH_3CH_2MgI$$

$$\begin{matrix} H & H \end{matrix}$$

ĊH₂CH₃ n-propyl alcohol (D)

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

Sol:
$$Ph-C-H+OH$$
 fast $Ph-C-H$ $Ph-C-H$ $Ph-C-H$ $Ph-C-H$ $Ph-C-H$ $Ph-C-H$ $Ph-C-OH$ $Ph-C-OH$ $Ph-C-OH$

38. (1)

Sol: The cannizzaro product of given reaction yields 2, 2, 2-trichloroethanol.

Cl₃CHO NaOH Cl₃CCOO + Cl₃CCH₂OH

Sol:
$$CH_3$$
 CH_3 CH

(2-Methyl-2-pentene) (A)

40. (4)

Sol: $CH_3 - \dot{C}H - CH_2 - OH$ (isobutyl alcohol) does not give iodoform test.

41. (4)

Sol:
$$H_3C-C=CH-CH_2-CHO \xrightarrow{[O]}$$
 CH_3

42. (3)

Sol:
$$CH_3CH_2COOH \xrightarrow{Cl_2} CH_3CH-COOH$$

$$Cl$$

$$CH_3CH_2COOH \xrightarrow{KOH(alc.)} CH_2 = CHCOOH$$

43. (3)

Sol: When two electron releasing groups are present the incoming group will occupy para or ortho position to the group which has more + R effect.

44. (4)

(Phthalic anhydride)

45. (2)

Sol: It is ald ol condensation reaction.

46. (4)

Sol: The synthesis requires three aldol & one cannizzaro reaction.

$$CH_3-CH=O + \bigcup_{\substack{O \\ (4 \text{ moles})}}^{H} \xrightarrow{\overline{O}H} C(CH_2OH)_4$$

47. (2)

Sol:
$$CH_3 - C - CH_3 \xrightarrow{KOH(aq)} CH_3 - C - CH_3$$

$$CH_3 - C - CH_3 \xrightarrow{(i) CH_3MgBr} CH_3 - C - CH_3$$

$$CH_3 - C - CH_3 \xrightarrow{(i) CH_3MgBr} CH_3 - C - CH_3$$

$$CH_3 - C - CH_3 \xrightarrow{(i) CH_3MgBr} CH_3 - C - CH_3$$

50. (3)

$$CH_{3} - C - CH_{2} - CH_{3} \xrightarrow{I_{2}} CI_{3} - C - CH_{2} - CH_{3}$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

 $\xrightarrow{\text{H}^+}$ CH₃CH₂COOH

Ozonolysis product of cyclohexene will give hexandial and this undergoes intramolecular aldol condensation in presence of alkali to give cyclic α,β -unsaturated aldehyde.

52. (2)

Sol: In decarboxylation, β -carbon acquires δ -charge. Whenever δ -charge is stabilized, decarboxylation becomes simple. In (B), it is stabilized by -M & -I of C = O, which is best amongst the options offered,

53. (4

Sol: Rate of hydrolysis \propto partial positive charge on > C = O groups.

54. (1)

Sol: Rate $\propto \frac{1}{\text{basicty of leaving group}}$

55. (1)

Sol:
$$C-NH_2 \xrightarrow{P_4O_{10}} CN \xrightarrow{MeMgBr} COOH$$

$$C-CH_3 \xrightarrow{(i) Ca(OH)_2+I_2} COOH$$

56. (3)

Sol: Iodoform test is carried out in hot alkaline medium. Under these conditions the esters will hydrolyse to give corresponding alcohols. Now ethyl alcohol will respond to iodoform test to give yellow ppt. of iodoform while methanol will not give iodoform.

57. (2)

Sol: If D₂O (heavy water) is taken instead of H₂O, as solvent, the reaction takes place in the following manner:

$$R-C \xrightarrow{OD} \xrightarrow{in D_2O} R-C \xrightarrow{O} \xrightarrow{R=C=O} \xrightarrow{R=C=O} (Slow)$$

$$R-C=O+R-C-O \xrightarrow{} RCOO \xrightarrow{} RCH_2OD$$

58. (2)

Sol: Clemmensen reduction

$$C = O \xrightarrow{\text{Zn-Hg/HCl}} CH_2$$

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

59. (4)

Sol: Correct reactivity order for nucleophilic addition reaction with PhMgBr
CH₃ CH₃ Ph

$$CH_3$$
 $C=O > CH_3$ $C=O > Ph$ $C=O$

(due to steric crowding)

60. (1)

It is Rosenmund reaction.

Integer Type Questions (61 to 75)

Sol:
$$(III)$$
 $OH + CHCl_3 + NaOH$ Reimer Tiemann reaction $CH = O$ Salicylaldehyde

Sol:
$$OH \xrightarrow{CN \rightarrow OH} OH \xrightarrow{95\% \text{ H,SO}_4} COOH$$

63. (82)

64. (1)

Sol:
$$Ph - CH_3 \xrightarrow{Hot \text{ Alkaline KMnO}_4} Ph - COO^-$$

 $Ph - CH = CH - CH_3$
 $\xrightarrow{Hot \text{ Alkaline KMnO}_4} Ph - COO^-$
 $Ph - C \equiv C - CH_3 \xrightarrow{Hot \text{ Alkaline KMnO}_4} Ph - COO^-$

65. (103)

66. (1)

Sol:
$$(i)$$
 Conc. KMnO₄/H $+$ CO₂ + H₂O

67. (110)

Sol:
$$Z \text{ is } (C_7H_{10}O)$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} CH_3 \\ CH_3 \end{array} \end{array} \\ \begin{array}{c} CH_3 \\ OH \\ CH_3 \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} CH_3 \\ OH \\ CH_3 \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} O\\ C-CH_3 \\ OH \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} O\\ C-CH_3 \\ O-CH_3 \end{array} \\ \end{array} \\ \begin{array}{c} O\\ C-CH_3 \end{array} \\ \begin{array}{c} O\\ C-CH_3 \end{array} \\ \begin{array}{c} O\\ C-CH_3 \end{array} \\ \end{array} \\ \begin{array}{c} O\\ C-CH_3 \end{array} \\ \begin{array}{c} O\\$$

68. (3)

Sol: The compound which contains
$$CH_3 - C - OCH_3 - CH - OCH_3 - CH - OCH_3 - OCH_3$$

iodoform test.

Sol:
$$H \subset X + KCN \longrightarrow H \subset CN$$

$$\xrightarrow{H_3O^+} H \subset COOH \xrightarrow{\Delta} CH_3COOH$$

Sol:
$$\begin{array}{c} & & & \\ & &$$

No. of -COOH group is '2'.

Sol:
$$CH_3COOH \xrightarrow{SOCl_2} CH_3COCI \xrightarrow{Benzene} OH OH OH CC-CH_3 \xrightarrow{ACOCI} COCH_3$$

Sol: (I)
$$\bigcirc$$
 + CH₃-C-Cl $\xrightarrow{\text{AlCl}_3}$ $\stackrel{\square}{\triangle}$

Friedel craft acylation

$$\begin{array}{c} & I_2/OH^{\bigoplus} \\ \hline & H^{\bigoplus} \end{array} + CHI_3$$

lodoform reaction

(II)
$$H$$
 Electrophilic addition H_3O^{\bigoplus} $COOH$ H_3O^{\bigoplus} $COOH$

$$\begin{array}{c}
O_3 \\
\hline
H_2O/\Delta
\end{array}$$
COOH
COOH

$$(IV) \bigcirc \xrightarrow{CH_3Cl} \xrightarrow{Cl_2/h\nu} \xrightarrow{Cl_2/h\nu}$$

$$\begin{array}{c} \text{OH} \\ \text{HO-C-OH} \\ \\ \hline \\ \frac{\text{NaOH}}{\text{excess}} \end{array} \longrightarrow \begin{array}{c} \text{COOH} \\ \end{array}$$

74. **(3)**

Sol: (I)
$$(CH_3CH_2COO)_2Ca \xrightarrow{\Delta}$$

$$\begin{array}{c} O \\ \parallel \\ CH_3-CH_2-C-CH_2-CH_3 \end{array}$$

(II)
$$CH_3$$
– CH_2 – $C\equiv N$ $\xrightarrow{CH_3$ – CH_2 – $MgBr$

(II)
$$CH_3$$
– CH_2 – $C\equiv N$ $\xrightarrow{CH_3-CH_2-MgBr}$

$$CH_3-CH_2-C\equiv N MgBr \xrightarrow{H_3O^+} CH_3-CH_2-C\equiv NH$$

$$CH_2CH_3 \qquad \qquad CH_2CH_3$$

$$CH_3-CH_2-CH_3-CH_2-CH_3$$

(III)
$$CH_3 - C - CH_2 - CH_2 - C - OC_2H_5$$

$$\begin{array}{c}
O & O \\
\parallel & \parallel \\
CH_3 - C - CH_2 - CH_2 - C - OH
\end{array}$$

$$\begin{array}{c}
O & \parallel \\
NaOH/CaO
\end{array}$$

$$\begin{array}{c}
O & \parallel \\
CH_3 - C - CH_2 - CH_3 - C - OH
\end{array}$$

$$\xrightarrow{\Delta} CH_3 - CH_2 - C - CH_2 - CH_3$$

(2) *75.*

Sol: (I)
$$OH = (i) \Delta$$
 (ii) $Zn-Hg/HCl$

(II)
$$CH_3COOAg \xrightarrow{Br_2/CCl_4} CH_3Br$$

(III) Ph-COOH
$$\xrightarrow{\text{NaOH}}$$
 Ph-H

(IV)
$$CH_3$$
— CH_3 — CH_5 — CH_3 — CH_5 — CH_3 — CH_5 — CH_3 — CH_3 — CH_3

AMINES

Single Option Correct Type Questions (01 to 60)

1. (4)

Sol:
$$(A)$$
 (A) (B) (B) (B)

2. (1)

Sol:

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CI} \xrightarrow{\text{NaCN}} & \text{CH}_3\text{CH}_2\text{CN} \xrightarrow{\text{Ni/H}_2} & \text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2 \xrightarrow{} \\ \text{(X)} & \text{(Y)} & \text{(Y)} \\ \\ \text{CH}_3\text{COOH} + & \text{CH}_3\text{CH}_2\text{CH}_2\text{NH} - & \text{C} - & \text{CH}_3 \xleftarrow{\text{CH}_3\text{COOCOCH}_3} \\ \end{array}$$

3. (1)

Sol: When connected with o- or p- carbon of benzene –OMe group is electron releasing.

4. (3)

Sol: More the delocalization of lone pair of nitrogen, lesser is the basicity, poor will be the nucleophilicity.

5. (2)

Sol: 3° amine do not react with diethyl oxalate. This is the Hofmann's method not Hinsberg's method.

6. (3)

H₂/Pd removes all the double bonds even in the ring at high temperature and high pressure.

7. (2)

Sol:

$$(A) - Optically active (B) - Optically active$$

$$(B) - Optically active (C) - Optically inactive$$

8. (3)

Sol:

$$HO_{3} \longrightarrow NH_{2} \xrightarrow{NaNO_{2}/HCI} HO_{3}S \longrightarrow N_{2} \stackrel{\dagger}{Cl} \xrightarrow{0 \text{ °C}} N \stackrel{\text{Me}}{\searrow} N \longrightarrow N \stackrel{\text{Me}}{\searrow} N \stackrel{\text{Me}}{\Longrightarrow} N \stackrel{\text{Me}}{\searrow} N \stackrel{\text{Me}}{\Longrightarrow} N \stackrel{\text{Me}}{$$

9. (4)

Sol: Secondary nitro compound gives blue colouration in Victor Meyer's test.

10. (1)

Sol:
$$R-NH_2 + C_6H_5SO_2Cl \longrightarrow C_6H_5SO_2 \longrightarrow N-R + HCl$$

The hydrogen attached to nitrogen in sulfonamide is strongly acidic due to the presence of strong electron withdrawing sulphonyl group. Hence, it is soluble in alkali.

11. (2)

Sol:
$$C_2H_5NH_2 + HNO_2 \longrightarrow C_2H_5OH \xrightarrow{PCl_5}$$

 $C_2H_5Cl \xrightarrow{NH_3} C_2H_5NH_2$
(Ethylamine)

12. (1)

Sol: Aromatic halides do not give nucleophilic substitution due to partial double bond character in C—X bond. So, Aryl amines cannot be prepared by Gabriel's pthalimide synthesis.

13. (3)

Sol: In pyridine $\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$ as well as in pyrrole

 $\begin{pmatrix} \vdots \\ N \\ H \end{pmatrix}$, N-atom is sp² hybridised. Pyridine is

more basic than pyrrole.

14. (4)

Sol: Aniline on reaction with NaNO₂/HCl at 0° C followed by coupling with β-naphthol gives a orange red dye.

:. Statement-1 is incorrect but statement 2 is correct.

15. (1)

Sol:

16. (1)

Sol: More nucleophilic nitrogen, more reactive with alkyl halide.

17. (3)

Sol:

NO₂
NO₂
NO₂
NO₂
NO₂
Chlorination
CI/FeCI,
Snicone: HCI

18. (2)

Sol:

CONH2

B_I/NaOH

Hoffmann's bromamide reaction

(benzamide)

(benzamide)

(benzamide)

NH2

CH,COCI

(acetylation)

(acetanilide)

19. (2)

20. (4)

Sol:

$$\begin{array}{c} NH_2 \\ \longrightarrow \\ CH_3 \end{array} \xrightarrow{NHCOCH_3} \begin{array}{c} NHCOCH_3 \\ \longrightarrow \\ CH_3COOH \end{array} \xrightarrow{NH_2O} \begin{array}{c} NH_2 \\ \longrightarrow \\ CH_4 \end{array} \xrightarrow{NH_2O} \begin{array}{c} NH_2 \\ \longrightarrow \\ CH_4 \end{array} \xrightarrow{NH_2O} \begin{array}{c} NH_2 \\ \longrightarrow \\ CH_4 \end{array}$$

21. (2)

Sol:

$$Ph - NH_{2} \xrightarrow{KOH} Ph - N \Longrightarrow C$$

$$(X)$$

$$CH_{3}COCH_{3} \xrightarrow{Cl_{2}/Ca(OH)_{2}} (CH_{3}COO)_{2}Ca + CHCl_{3}$$

$$(Z)$$

22. (4)

23. (2)

Sol. Amides give Hoffmann bromamide reaction.

24. (2

Sol: $CH_3 - CH - C - NH_2 \xrightarrow{NaOH + Br_2} CH_3 - CH - NH_2 \\ | Ph | Ph$

It is Hoffmann bromamide reaction.

25. (3

Sol: $R-X \xrightarrow{KCN} R-CN \xrightarrow{[H]} R-CH_2-NH_2$

26. (2)

Sol: Gabriel phthalimide synthesis is best method for preparing primary amines from alkyl halides without changing the number of carbon atoms in the chain.

27. (4)

Sol: $CH_3 - CONH_2 + Br_2 + NaOH \xrightarrow{\Delta} CH_3NH_2 + Na_2CO_3$ [Hoffmann bromamide reaction]

28. (2)

Sol: $C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} C_6H_5N_2^+Cl^- \xrightarrow{CuCN} C_6H_5CN \xrightarrow{H^+/H_2O} C_6H_5COOH$

29. (3)
$$\stackrel{\oplus}{N_2Cl}$$
Sol. $\stackrel{H_3PO_2}{\longleftrightarrow}$

30. (3)

Sol:
$$C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} C_6H_5N_2^{\dagger}Cl^{-1}$$

 $\xrightarrow{H_2O} C_6H_5OH$

31. (4)

Sol:
$$NO_2$$
 NO_2 NH_2 NH

32. (4)

Sol: This reaction is called Gattermann reaction.

33. (2)

Sol:
$$\begin{array}{c}
NO_{2} & NO_{2} & NH_{2} \\
\hline
NO_{3} & NH_{2} & NH_{2} \\
\hline
NO_{4} & NH_{2} & NH_{2} \\
\hline
NO_{5} & NH_{2} & NH_{2} \\
\hline
NO_$$

34. (2)

Sol: Aniline prefer coupling in slightly acidic medium.

35. (1)

Sol: Phenol prefer coupling in slightly basic medium.

36. (3)

Sol: I-R; II-S; III-P; IV-Q

37. (2)

Sol: I-S; II-R; III-P; IV-O

38. (4)

Sol: I-Q, S, T; II-P, T; III-Q, T; IV-R, T

39. (1) $(P) \xrightarrow{\text{CONH}_2} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NHCOCH}_3} \xrightarrow{\text{NHCOCH}_3} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NHCOCH}_3} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NHCOCH}_3} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NHCOCH}_3} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NHCOCH}_3} \xrightarrow{\text{NHCOCH}_3}$

40. (1)
Sol:
$$\stackrel{NH_2}{\longrightarrow} \stackrel{N_2^+C\Gamma}{\longrightarrow} \stackrel{C_2H_3N(CH_3)_2}{\longrightarrow}$$

$$(CH_3)_2N \longrightarrow N = N \longrightarrow$$

41. (1)

Sol: In the diazotisation of aniline with sodium nitrite and hydrochloric acid, an excess of hydrochloric acid is used primarily to suppress the concentration of free aniline available for coupling

42. (3)

Sol:
$$NH_2$$
 N_2 N_2

$$O_2N$$
 $N = N$ OCH_3

43. (1)

Sol:

Aniline
$$\underbrace{\text{(i) NaNO}_{\text{/HCI},273 \text{ K}}}_{\text{(ii) CuCN/KCN}}$$
 $\underbrace{\text{(ii) DIBAL-H}}_{\text{(ii) H},0}$

44. (4)

Sol: In strongly acidic solutions, aniline converts into anilinium ion i.e. more electron withdrawing nature so the ring deactivates towards electrophilic reagents.

45. (1)

Sol: Since the overall reaction is intramolecular the product under Hoffmann conditions will be self-product only.

46. (3)

Sol:

$$CH_{3} \xrightarrow{\text{(i) NaNO}/HCI} OH \\ \hline \text{(ii) OH} \\ \hline \text{(iii) OH} \\ \hline \text{(Nano)/HCI} \\ \hline$$

47. (2)

Sol:

Sol:
$$NH_2$$
 $N \equiv C$ $CH_3 + 3KOH \longrightarrow CH_3$ CH_3

51. **(1)**

Sol:
$$NH_{2} \xrightarrow{NaNO,+ \text{ dil. HCl}} NH_{2} \xrightarrow{NaNO,+ \text{ dil. HCl}} NH_{4} \xrightarrow{N} NCl^{-} \xrightarrow{HBF_{4}} F$$

$$NH_{2} \xrightarrow{NaNO,+ \text{ dil. HCl}} NH_{4} \xrightarrow{N} NH_{4} \xrightarrow{N} HBF_{4} \xrightarrow{N} HBF_{$$

Sol:
$$CH_3CH_2NH_2 + CHCl_3 + 3KOH \rightarrow$$

 $CH_3CH_2NH_2 + CHCl_3 + 3KOH \rightarrow$

 $C_2H_5NC + 3KCl + 3H_2O$

Benzonitrile

53. (3)
$$NH_{2} \longrightarrow NANO_{2} \longrightarrow HBF_{4} \longrightarrow A$$
Sol:
$$NANO_{2} \longrightarrow HBF_{4} \longrightarrow A$$

54. (1)
$$NH_{2} \qquad N^{+}_{2}C\Gamma \qquad C \equiv N$$
Sol:
$$NaNO_{2} \qquad CuCN \qquad \Delta$$

Benzene diazonium chloride

55. **(3)**

Sol:
$$NH_{2} \longrightarrow NaNO_{2} / HCI \longrightarrow NaNO_{2} / HCI \longrightarrow CuCN/KCN \longrightarrow CH,$$

$$CH_{2} \longrightarrow CuCN/KCN \longrightarrow CN$$

$$CH_{3} \longrightarrow CuCN/KCN \longrightarrow CH$$

$$CH_{4} \longrightarrow CH_{5} \longrightarrow CH_$$

56. (1)
$$N_{2}^{\oplus}Cl^{\ominus}$$
Sol:
$$HBF_{1}/\Delta$$

57. **(1)**

Sol:

$$\begin{array}{c}
O \\
NH_3CH_3COO \\
N \\
N=N-O-C-CH_3
\end{array}$$

$$\begin{array}{c}
O \\
N \\
N=N-O-C-CH_3
\end{array}$$

$$\begin{array}{c}
N=N-O-C-CH_3
\end{array}$$

$$\begin{array}{c}
N=N-O-C-CH_3
\end{array}$$

$$\begin{array}{c}
N=N-O-C-CH_3
\end{array}$$

$$\begin{array}{c}
N=N-O-C-C+CH_3
\end{array}$$

$$\begin{array}{c}
N=N-C-C-C+CH_3
\end{array}$$

$$\begin{array}{c}
N=N-C-C-C+CH_3$$

$$\begin{array}{c}
N=N-C-C-C+CH_3
\end{array}$$

$$\begin{array}{c}
N=N-C-C-C+CH_3
\end{array}$$

$$\begin{array}{c}
N=N-C-C-C+CH_3
\end{array}$$

$$\begin{array}{c}
N=N-C-C-C+CH_3
\end{array}$$

$$\begin{array}{c}
N=N-C-C-C+CH_3$$

$$\begin{array}{c}
N=N-C-C-C+CH_3
\end{array}$$

$$\begin{array}{c}
N=N-C-C-C+CH_3$$

$$\begin{array}{c}
N=N-C-C-C+CH_3
\end{array}$$

$$\begin{array}{c}
N=N-C-C-C+CH_3$$

$$\begin{array}{c}
N=N-$$

59. (1)
$$NH_2 NaNO_2 N_2^*C\Gamma -N_2$$
 OH

60. **(4)** Br₂+NaOH

CH₃CH₂CCONH₂ Sol: CH₃CH₂CH₂NH₂

Primary amines give positive carbylamine test

Integer Type Questions (61 to 75)

61. (28)

Sol:
$$CH_3NH_2 + HNO_2 \xrightarrow{NaNO_2 + HCl} [CH_3N_2^+Cl] \xrightarrow{H_2O} CH_3OH + N_2 \uparrow + HCl$$

62. (1)

Sol:

(Picryl Chloride) requires room temperature for hydrolysis because —NO₂ group increases the rate of nucleophilic substitution.

63. (3

Sol: Conjugate acid at N (3) is resonance stabilized (guanidine type)

64. (1)
Statement (II) is incorrect.

Statement (II) is incorrec **65.** (3)

66. (5)

Sol: Five primary amines are possible for the molecular formula $C_4H_{11}N$.

Only statement (III) is correct.

67. (75)

68. (94)
Sol:
$$NO_{2} \xrightarrow{Sn/HCl} NH_{2} \xrightarrow{NaNO_{2}} HCl \ 0-5^{\circ}C$$

$$NH_{2} \xrightarrow{NaNO_{2}} HCl \ 0-5^{\circ}C$$

$$OH$$

$$(Z)$$

Molecular weight of Z = 94

69. (78)

$$\begin{array}{c} COONa + H_2O + CO_2 \uparrow \\ & & & \\ & & & \\ NaHCO, \\ COOH \\ \hline \\ NaNO_2 + HCI \\ \hline \\ 0.5 \text{°C} \\ \end{array} \begin{array}{c} N_2CI \\ & CN \\ \hline \\ O.5 \text{°C} \\ \end{array} \begin{array}{c} CN \\ & Complete \\ \hline \\ hydrolysis \\ \end{array} \begin{array}{c} Complete \\ \hline \\ hydrolysis \\ \end{array} \begin{array}{c} CN \\ & COONB \\ \hline \\ NaHCO, \\ COOH \\ \hline \\ NaNO_2 + HCI \\ \hline \\ (P) \\ \end{array} \begin{array}{c} CN \\ & COONB \\ \hline \\ A \\ \hline \\ NOOH + CaO \\ \hline \\ \\ CD \\ \end{array}$$

70. (99)

Molecular weight = 198

$$\frac{198}{2} = 99$$

71. (5)

Sol: By reaction with one mole of CH₃ – C – Cl with one –NH₂ group the molecular mass increases with 42 unit. Since the mass increases by (390 – 180) = 210 hence the number of –NH₂ groups is 5. RNH₂+CH₃COCl

$$\xrightarrow{\text{(-HCl)}} R - NH - C - CH_3$$

72. (4

Sol. Hoffmann bromamide degradation reaction

$$R - C - NH_2 + Br_2 + 4 NaOH \longrightarrow$$

$$R - NH_2 + Na_2CO_3 + 2NaBr + 2H_2O$$

1 mole bromine and 4 moles of NaOH are used per mole of amine produced.

73. (93)

$$\begin{array}{c} C_6H_5N_2^+Cl^- \xrightarrow{Zn/HCl} C_6H_5NHNH_2 \\ \xrightarrow{Zn/HCl} C_6H_5NH_2 \end{array}$$

74. (20)

75. (1)
$$CH_3 - CH_2 - CH - CH_3 + HNO_2 \longrightarrow CH_3 - CH_2 - CH - CH_3$$

$$NH_2 \qquad OH$$

BIOMOLECULES

Single Option Correct Type Questions (01 to 60)

- 1. (1)
- Sol: N-terminal \leftarrow Val-Gly-Phe Val-Ala-Val \rightarrow C-terminal N-terminal
- 2. (1)
- **Sol:** In acidic (pH = 2) medium NH₂ groups accepts H^+ .
- **3.** (1)
- **Sol:** The above phenomenon is called mutarotation in which specific rotation of the solution changes.
- 4. (2)
- **Sol:** Aldehydes and α-hydroxy ketones give positive Tollen's test. Glucose has an aldehyde group and fructose is an α-hydroxy ketones.
- 5. (3)
- **Sol:** Starch gives iodine test but cellulose does not.
- 6. (1)
- **Sol:** Statements 2, 3 & 4 are correct by definition and concept.
- 7. (1)
- **Sol:** Glucose and fructose can reduce Tollen's reagent.
- 8. (1)
- **Sol:** If DNA segment is AATCAGTT then m-RNA segment is AAUCAGUU.
 - Here Thiamine is replaced by uracil.
- 9. (4)
- **Sol:** Epimers are diastereomers which differs in configuration about only one chiral center.
- 10. (3)

Sol: For acidic amino acid.

$$P^{I} = \frac{P^{Ka_{1}} + P^{ka_{3}}}{2} = \frac{1.88 + 3.65}{2} = \frac{5.53}{2} = 2.77$$

For basic amino acids

$$P^{I} = \frac{P^{Ka_2} + P^{ka_3}}{2} = \frac{8.95 + 10.53}{2} = \frac{19.48}{2} = 9.74$$

- 11. (3)
- **Sol:** When fructose is treated with dil. solution of an alkali, it undergoes reversible isomerization to form an equilibrium mixture of D-glucose, D-fructose and D-mannose.
- 12. (3
- Sol: $C_{12}H_{22}O_{11} + H_2O \xrightarrow{HCl} C_6H_{12}O_6 + C_6H_{12}O_6$ $[\alpha]_{D}=+66.5^{\circ}$ D-glucose $[\alpha]_{D}=+52.5^{\circ}$ $[\alpha]_{D}=-92.4^{\circ}$

Hydrolysis of sucrose to an equimolar mixture of D (+) glucose and D (-) fructose is accompanied by a change in the sign of optical rotation from dextro rotatory to laevorotatory, the overall process is called inversion of sugar

- 13. (2)
- Sol: CHO

 H R OH

 HO S H

 HO S H
- 14. (4)
- **Sol:** Glucose exist in cyclic hemiacetal form hence do not respond these test.

15. (2)

Sol:
$$> C = O + HCN \xrightarrow{CN} C - OH$$
(cynohydrin)

16. (1)

Sol: Starch is a polymers of α -glucose and amylose is a component of starch.

17. (4)

Sol: α-helical structure of protein is stabilized by straight H-bonds between imide group (–NH–) of one amino acid and carbonyl group (–CO–) of fourth amino acid residue.

18. (4)

Sol: Protein denaturation is disruption of stabilizing interchain bonds which destroy 3-dimensional form of proteins. The latter becomes non-functional.

19. (4)

Sol: The pH at which there is no net migration of the amino acid under the influence of an electric field is called isoelectric point. At this pH amino acid exist in the form of zwittor ion

$$\begin{array}{c}
OH \\
\hline
\text{(at higher pH)}
\end{array}$$

$$\begin{array}{c}
R \\
H_2N - CH - COO \\
\hline
\text{(moves towards anode)}$$

20. (2)

Sol: The complementary bases in DNA are adenine and thymine; guanine and cytosine.

21. (1)

Sol:

Ring (a) is six membered oxygen containing ring.

 \therefore Pyranose ring and CH₂OH of C—5 and — OR of C—1 are across of one another hence, it is α -glycosidic linkage.

22. (4)

Sol: Glucose and fructose cannot be differentiated by Fehling solution because in alkaline medium an equilibrium mixture of D-glucose, D-fructose, and D-mannose.

23. (1)

Sol: Diastereomers which differ in configuration only at one C atoms

24. (1)

Sol:

$$C_6H_{12}O_6 + Tollen's reagent \rightarrow (C_6H_{11}O_7)^- + Ag \downarrow$$
Silver mirror of Silver elemen

25. (2)

Sol: Monosaccharide containing —CHO group with 6 carbon atoms is called aldohexose.

26. (2)

Sol: Anomer differ in configuration at C-1

27. (2)

Sol: Glycine (H₂NCH₂NH₂) do not contain chiral carbon.

28. (3)

Sol: Hydrogen bond

29. (1)

Sol: Vitamin B_6 is as also known as Pyridoxine

30. (3)

Sol: In DNA two strands are not identical.

31. (4)

Sol: I-P, Q; II-P, S; III-P, R, T; IV-P, T

32. (2)

Sol: I-Q, R; II-S; III-Q; IV-P

33. (2)

Sol: 3 molecule of phenylhydrazine is used in Osazone formation in which two molecules reacts in similar manner whereas the third reacts in different way.

34. (3)

Sol:

$$C_6H_{12}O_6$$
 + Fehlings solution \rightarrow $(C_6H_{11}O_7)^-$ + Cu_2O luconic acid (Raddish brown ppt.)

35. (3)

Sol: Cellulose is a linear polymer of D-glucose which on hydrolysis produces D-glucose.

36. (3)

Sol: Hydrogen bonding

37. (2)

Sol: Insulin is a peptide hormone

38. (2)

Sol: The pyrimidine bases present in DNA are Cytosine and thymine

39. (3)

Sol: Anomer differ in configuration at C-1

40. (1)

Sol: The secondary structure of protein refers to α -helical or β -pleated backbone.

41. (2)

Sol: α -D-(+)-glucose and β -D-(+)-glucose are anomers as they differ in configuration at C-1

42. (3)

Sol: The change in the optical rotation of freshly prepared solution of optical active substance is known as Mutarotation

43. (3)

Sol: Glycine (H₂NCH₂NH₂) is an optically inactive.

44. (1)

Sol: Vitamin C is water soluble.

45. (3)

Sol: $C_6H_{12}O_6 + HI \rightarrow n$ -Hexane

46. (4)

Sol: Sucrose do not contain free anomeric –OH group.

47. (3)

Sol: $pI = \frac{1.88 + 3.65}{2} = 2.77$

48. (4)

Sol: α -D-glucose and β -D-glucose are anomers

49. (2)

Sol: N CO_2H lone pair of N-atom is

delocalised hence, nitrogen have no ability to accept H^+ .

50. (1)

Sol: Compare the pI values (Asp < Gly < Lys < Arg)

51. (1)

Sol: Given tripeptide is made up of valine, serine and Threonine amino acids.

52. (2)

Sol: I-Q; II-P; III-S; IV-R

53. (1)

Sol: Ring structure of glucose is due to formation of hemiacetal and ring formation between C₁ and C₅

54. (4)

 $\mathrm{NH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CHCOOH}$

contain 2 amino group

55. (1)

Sol: I-Q; II-P; III-S; IV-R

56. (1)

Sol: During denaturation only weak bond like H-bond are broken.

57. (4)

Sol: Theoretical

58. (3)

Sol: $pI = \frac{6.04 + 9.14}{2} = 7.59$ which is near to given pH = 8 hence it exist an zwitter ion.

59. (1)

Sol: I & II are anomer as they differ in configuration at C-1.

60. (3)

Sol: A pair of diastereomeric aldoses which differ in configuration except at C-1 is called epimers.

Integer Type Questions (61 to 75)

61. (6)

Sol:
$$pH_2 = \frac{pk_{a_1} + pk_{a_2}}{2} = \frac{2.34 + 9.66}{2} = 6$$

62. (4)

Sol:
$$-CH(OH) + CH_3COCl \longrightarrow$$

O \parallel —CH —O — C—CH $_3$ for every acetylation, molecular mass increases by (12+16+14)=42.

∴ number of —OH groups

$$=\frac{318-150}{42}=4$$

63. (4)

Sol:
$$pI = \frac{pKa(\beta) + pKa(\gamma)}{2}$$

= $\frac{-\log(10^{-5}) - \log(10^{-3})}{2} = 4$

64. (4)

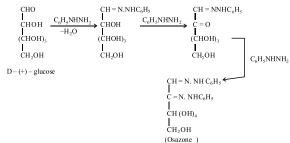
Sol:

$$\begin{array}{c|c}
 & 1 \text{ CHO} \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & |$$

 C_2, C_3, C_4 & C_5 are chiral

65. (3)

$$\begin{array}{c|cccc} & & & & & & & \\ & CH_2-OH & & & & \\ & & & & & \\ & & & & & \\ \textbf{Sol:} & & & & & \\ & & & & & \\ \textbf{Sol:} & & & & & \\ & & & & & \\ & & & & & \\ \textbf{CH}_2-OH)_4 & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \textbf{CH}_2-OH & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \textbf{CH}_2-OH & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$


66. (11)

Sol:
$$2+4+5=11$$

Depends upon number of -OH group.

67. (3)

Sol:

68. (6)

Sol: Six tripeptides are possible from three different amino acids

69. (3)

Sol: Tripeptide made up of three amino acids.

70. (2)

Sol: Aspartic acid and glutamic acids are acidic amino acids.

71. (2)

Sol:

$$H_3^{\oplus}$$
 — CH_2 —

72. (8)

Sol: Total no. of optical isomers = $2^n = 2^3 = 8$.

73. (4)

Sol: A pentapeptide has five amino acids joined by four peptide bonds.

74. (8)

Sol: Sucrose gives octaacetyl derivative.

75. (4)

Sol: Valine, Leucine, Isoleucine, Threonine.